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Theme
Higher descent theory, non-abelian cohomology, and higher-order category theory are all one
subject which might be called  post-modern algebra (or even Òpost-modern mathematicsÓ
since geometry and algebra are handled equally well by higher categories).  
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¤1.  Outline of the program

What is cohomology? It involves a space and a coefficients object. My view [St2] is that a

reasonable concept of space is a functor  R : ∆op aAE ; that is, a simplicial object in  E.  For
example, homotopy theorists are generally happy with simplicial sets as their spaces. We admit
that sometimes a diagram of such functors may be needed, such as when  E is a topos and  R
is a hypercover; then we need to take a colimit of the cohomology objects we are about to
describe.  

It is also my view that a reasonable concept of coefficients object is a weak ωÐcategory A
in the category E. (Eventually, in our pursuit of stacks [Gk], we might consider a contravariant

homomorphism  A  from  E into the weak (n+1)-category of weak n-categories.) For the time
being, we shall restrict to the case where  A  is an ω-category since these are very easy to define
precisely.  (In fact, the concepts that arise in dealing with this case provide some of the tools for
the general case.)  Cartesian closed categories  n-Cat,  n ≥ 0,  are defined recursively by:

0-Cat  =  Set ,       (n+1)-Cat  =  (nÐCat)-Cat .
Objects of  n-Cat  are called n-categories.  Let  ω-Cat  denote the union of the categories  n-Cat;  it
is also cartesian closed.  So, for our purposes here, an ω-category is just an n-category for some n
≥ 0.  The n-cells in an ω-category can be defined recursively: the 0-cells of a set are its elements;
the (n + 1)-cells of  A  are the n-cells of some hom n-category  A⁄(a⁄,⁄⁄b)  for  a, b  objects of  A.  It
is an important fact that n-categories are models for a finite limit theory, in fact, a 1-sorted finite
limit theory where the one sort is Òn-cellÓ.  In particular, this means that we can model n-
categories in any finitely complete category  E.  
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Take a space  R : ∆op aAE and a coefficients object  A∈ω -Cat⁄(E).  Form the functor

E ⁄(R⁄⁄,⁄⁄A) :  ∆ aAωÐCat ⁄⁄.  We wish to construct the cohomology ω-category H ⁄(R⁄⁄,⁄⁄A)  of R  with
coefficients in A.  (Some people would have me call it the Òcocycle ω-categoryÓ rather than
cohomology, but the spirit of category theory has it that our interest in cells of any ω-category is
only up to the appropriate equivalence, and this very equivalence is the appropriate notion of
cobounding. ) 

Jack Duskin pointed out to me (probably in 1981) that the construction should be done
for any cosimplicial ω-category  X : ∆ aAωÐCat  and the result would be a lax descent
ωÐcategory Desc X .  Then we would put

H ⁄⁄(R⁄⁄,⁄⁄A)  =  Desc E⁄(R⁄⁄,⁄⁄A).
Duskin provided an informal description of  Desc X by drawing the low dimensional cells.   

Let us look fairly explicitly at the descent 2-category Desc ⁄⁄X of a truncated cosimplicial

2-category  X :
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has objects  (⁄⁄X , f , σ )  where  X  is an object of  X⁄⁄0 ,  where  
f : ∂1 X aA∂0 X

is an arrow of  X⁄⁄1,  and where
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is a 2-cell of  X⁄⁄2 ⁄⁄,  such that the following equation holds in  X⁄⁄3 (commutative tetrahedron):
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(ignoring normalisation conditions; these involve the codegeneracy maps)

has arrows  (u ⁄⁄,⁄⁄⁄θ⁄) : (⁄⁄X , f , σ )  aA(⁄⁄Y , g , τ )  where  u : X   aAY  is an arrow of  X⁄⁄0 ,  and
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is a 2-cell of  X ⁄⁄1 such that the following equality holds in  X ⁄⁄2 (commutative triangular
cylinder):
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and has 2-cells   ⁄⁄α : (u ⁄⁄,⁄⁄⁄θ⁄) ⇒ (v⁄⁄,⁄⁄⁄φ⁄) : (⁄⁄X , f , σ )  aA(⁄⁄Y , g , τ )  just 2-cells  α : u ⇒ v : ⁄⁄X  aA⁄⁄Y
in  X⁄⁄0 such that the following equality holds in  X⁄⁄1 (commutative circular cylinder):
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Staring at these diagrams we see that the objects of  Desc X are closely related to the
nerve of an ω-category since the diagrams are all simplexes in ω-categories.  In making precise
this notion of nerve, which was suggested to me by John Roberts, I had introduced [St1] an n-
category  On for each  n ≥ 0,  called the n-th oriental. I had defined what is meant by a free n-
category and shown the sense in which  On is the free n-category on the n-simplex.  An n-
functor  On

aAA  is a precise realisation of the concept of an n-simplex drawn in  A.  To see
the relation to the descent construction, we note that the orientals themselves form a
cosimplicial ω-category  O∗ :  ∆ aAωÐCat  and the objects of  Desc X are precisely morphisms
of cosimplicial ω-categories  O∗

aAX⁄⁄.  
For some reason it took me longer to realise that the pasting diagrams occurring in
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Desc X were all products of ÒglobsÓ with simplexes.  This led me to Òparity complexesÓ [St2]
which were designed to allow me to redo what I had done for simplexes for a more general
class of geometric structures closed under geometric product. 

¤2.  Parity complexes

Free categories on circuit-free directed graphs have particularly simple descriptions.
We generalise this to higher dimensions following [St2]. 

A parity complex  C  of dimension  n  consists of a graded set  C = Σ ⁄⁄⁄0⁄⁄≤⁄⁄k⁄⁄≤⁄⁄n Ck and
functions  (Ð) ⁄Ð,  (Ð)⁄+ :  Ck

aAP ⁄⁄(Ck
⁄
Ð
⁄
1
⁄)  for  0 < k ≤ n .  There are some axioms such as

x⁄- ⁄⁄- ∪  x++ =  x ⁄-⁄⁄+ ∪  x+⁄- .

The model for the free n-category  O ⁄⁄C  on  C  will now be succinctly described in a purely
combinatorial way. An n-cell of  O⁄⁄C  is a pair (M⁄⁄,⁄⁄P)  of non-empty finite subsets  M, P  of  C
such that the following conditions hold (where  ¬S  means the complement of  S  in  C⁄):

(i)  each of  M  and  P  contains at most one element of  C0 and, for all  x ≠ y  in  Ck

with  k⁄⁄> ⁄⁄0,  if both  x, y ∈ M  or if both  x, y ∈ P,  then the set  (x ⁄Ð ∩ y⁄Ð⁄) ∪ (x⁄+ ∩ y ⁄+⁄)  is empty;

(ii)  P = ( ⁄M⁄∪ ⁄M⁄+ ⁄)⁄∩¬M⁄⁄Ð,  M = (⁄P ⁄∪ ⁄M⁄Ð ⁄⁄)⁄∩¬M⁄+, P = ( ⁄M⁄∪ ⁄P⁄+ ⁄)⁄∩ÂP⁄⁄Ð,   M  = (⁄P⁄∪ ⁄P⁄Ð⁄)⁄∩¬P⁄⁄+.
The k-source and k-target of  (M⁄⁄,⁄⁄P)  are defined as follows (where  Sk = Ck ∩ S  and  S⁄⁄(k)⁄ =
Σ ⁄⁄h⁄≤⁄k Sh for any subset  S  of  C):

sk
⁄(M ⁄⁄,⁄⁄P) = ( M⁄(k) , Mk ∪ P ⁄(kÐ1) ) ,   tk

⁄(M⁄⁄,⁄⁄P) = ( M⁄(kÐ1) ∪ Pk , P⁄(k) ) .

An ordered pair of cells  (M⁄⁄,⁄⁄P), (N⁄⁄,⁄⁄Q)  is called k-composable when
tk⁄(M ⁄⁄,⁄⁄P)  =  sk

⁄(N⁄⁄,⁄⁄Q) ,
in which case their k-composite is defined by

(M ⁄⁄,⁄⁄P) °⁄k ⁄(N⁄⁄,⁄⁄Q)  =  ( M ∪ (⁄N⁄⁄∩¬Nk⁄⁄) , (⁄P∩¬Pk
⁄⁄) ∪ Q ).

The k-cells of  O⁄⁄C  are the n-cells  (M⁄⁄,⁄⁄P)  with  sk
⁄(M⁄⁄,⁄⁄P) = (M⁄⁄,⁄⁄P).  The proof that  O⁄⁄C   is an n-

category is non-trivial. There is a dimension preserving injective function  
x jaA< x >  :  C aaA O⁄⁄C

given inductively as follows: for  x∈ Ck ,  put  < x > =  (M⁄⁄,⁄⁄P)  where  
Mk =  Pk =  { x } ,

M ⁄r⁄⁄Ð ⁄1 =  (M ⁄r⁄)⁄Ð⁄⁄∩ ⁄⁄¬⁄(Mr
⁄)⁄+,    P ⁄r⁄⁄Ð ⁄1 =  (P ⁄r⁄)⁄Ð⁄⁄∩ ⁄⁄¬⁄(Pr

⁄)⁄+ for  0 < r ≤ k .
The notation I use for this particular  M  and  P  is  µ(x)  and  π(x)  so that  < x > =  (µ(x)⁄⁄,⁄⁄π(x)).  It
is also non-trivial to prove that  O⁄⁄C  is the free n-category generated by the cells  < x >,  x∈ C.

The product C⁄⁄×⁄⁄D  of two parity complexes  C⁄, D  is given by

  
(C ×D)n = Cp

p + q = n
∑ ×Dq , (x, a)ε = xε × {a} ∪ {x} × aε(p)

for x∈ Cp
⁄⁄,  a∈ Dq

⁄⁄,  ε∈ {Ð⁄, +}⁄,  where  ε(p)∈ {Ð⁄, +}  is  ε for  p  even and is not  ε for  p  odd. 
Parity complexes can be regarded as combinatorial chain complexes. Each parity
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complex  C  gives rise to a chain complex  F⁄C  by taking the free abelian groups on each  Cn

and using the differential  d(x) = x+ Ð xÐ ,  where we have identified  x+ with the formal sum of
its elements.  It is easy to see that we have a canonical isomorphism of chain complexes: 

F(C⁄⁄× D)  ≅ FC ⊗ FD ,
where we remind readers that the tensor-product boundary formula is

d(x⁄⊗ ⁄a)  =  dx⁄⁄⊗ ⁄⁄a  +  (Ð1)⁄p x⁄⁄⊗ ⁄⁄da for  x∈ FCp
⁄,  a∈ FDq .

There are explicit formulas for  µ(x⁄,⁄⁄a), π(x⁄,⁄⁄a)  in terms of  µ(x), µ(a), π(x), π(a). To express these,
write  χr to denote  χ∈ {⁄⁄µ⁄⁄,⁄⁄π⁄⁄}  when  r  is even and to denote the other element of  { ⁄⁄µ⁄⁄,⁄⁄π⁄⁄}  when
r  is odd. Then

  
χ(x, a)n = χ(x)r × χr (a)s

r + s = n
U .

The join C⁄¥ ⁄D  of two parity complexes  C, D  is given by

  
(C·D)n = Cn + Cp

p+q+1= n
∑ ×Dq +Dn

in which the summands  C  and  D  are embedded as sub-parity complexes and the elements
(x⁄,⁄⁄a)∈ Cp

⁄⁄×⁄⁄⁄⁄Dq
⁄ are written as  xa  with

(xa)Ð = xÐa ∪ xaÐ and    (xa)+ = x+a ∪ xa+ for  p  odd,

(xa)Ð = xÐa ∪ xa+ and   (xa)+ = x+a ∪ xaÐ for  p  even,

where, for example,  x+a = { ya :  y∈ x+ }  is taken to mean  {a}  when  p = 0.  In particular, when
D  consists of a single element  ∞ in dimension 0, the join  C⁄¥⁄⁄D  is called the right cone of C

and denoted by  C>.  Also  D⁄¥⁄⁄C  is the left cone of C  and denoted by  C<.
Let  1 denote the parity point; it is the parity complex  C  with  C0 = { 0 }  and  Cn = ∅

for n > 0.  The parity interval is the parity complex which is the join  I = 1 ⁄⁄¥⁄⁄1.  
The parity n-simplex is the (n+1)-fold join  1¥(n+1) =  1 ⁄⁄¥⁄⁄1¥ . . . ⁄⁄¥⁄⁄1 of parity points.  For

n = 3:
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⇓

⇓

03

01

12

23
02

023

012
⇒
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3

⇓
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12

23
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0123

The parity n-cube is the n-fold product  I×n = I × I × . . . × I ⁄ of parity intervals. For  n = 3:

Page  5



Ð Ð Ð

Ð Ð +

Ð + +

+ + +

+ Ð Ð

+ + Ð

+ Ð +

Ð Ð 0

Ð 0 +

0+ +

0 Ð Ð

+ 0 Ð

+ + 0

Ð Ð Ð

Ð Ð +

Ð + +

+ + +

+ Ð Ð

+ + Ð

Ð + Ð

Ð Ð 0

Ð 0 +

⇒

⇒ ⇒

⇒ ⇒

⇒
+ 0 +

0 Ð + + Ð 0

0 Ð 0

0 0 + + 0 0

0 0 0+ 0 Ð
Ð 0 0 0 0 Ð

0 + 0

0+ + + + 0

0 Ð Ð

Ð 0 Ð

Ð + 0 0 + Ð
⇒

The parity n-glob is the parity complex  nG defined by 

nGm =  { (ε⁄⁄, m) :  ε = Ð  or  + }  for  m < n ,     nGn =  { n },  
(ε⁄⁄, m) ⁄Ð = { (Ð, m Ð 1) },   (ε⁄⁄, m)+ = { (+, m Ð 1) },  n⁄Ð = (Ð ⁄, n Ð 1),  n⁄+ = (+⁄, n Ð 1) .

For  n = 3:

( Ð , 0 ) ( + , 0 )
( Ð , 1 )

( + , 1 )

3( Ð , 2 ) ( + , 2 )

A precise definition of the n-th oriental, that is, the free n-category on the n-simplex, is
On =  O 1¥(n+1)  .

A precise definition of the nerve  N(A)  of an ω-category  A  is then
N(A)n =  ω-Cat (⁄⁄On , A⁄⁄) .

This process is quite Kanonical: from the functor  O∗ : ∆aAω-Cat⁄⁄,  we obtain the nerve functor

N : ω-Cat aA[⁄∆op, Set]  and its left adjoint  Φ.  While the restriction of  N  to 1-categories is
fully faithful, it is not true that  N  itself is full: simplicial maps  N(A) aAN(B)  amount to
normal lax functors  A aAB . 

¤3. The Gray tensor product of ωωωω-categories and the descent ωωωω-category

We begin by reminding the reader of the technique of Brian Day [D1], [D2] for
extending a monoidal structure on a small category  C to a biclosed monoidal structure on a
cocomplete category  X using left Kan extension along a dense fully faithful functor  J : C
aAX⁄:  the formula is

   
X⊗ Y = (XC,D

∫ (JC,X) × X (JD,Y))• J(C⊗D)

where  S • X  means the coproduct in the category  X of  S  copies of  X,  for  S  a set and  X∈ X.
The technique was already used by the author [St3] to construct the Gray tensor product of 2-
categories.
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The free ω-categories  O I×n on the parity cubes (n ≥ 0) form a dense full subcategory  Q

of the category  ω-Cat ⁄.  The subcategory  Q is monoidal via the obvious tensor product

(O I×m) ⊗ (O I×n) =  (O I×(m⁄⁄+ ⁄⁄n)) .
Hence, by Day, we induce a biclosed monoidal structure on  ω-Cat.  It is not the cartesian
monoidal structure.  We shall call it the Gray monoidal structure on  ω-Cat,  although it is not
really what John Gray defined; his tensor product was on 2-Cat.  The present structure was
considered by Richard Steiner [Sn] and explored by Sjoerd Crans [C]. Dominic Verity [V] has
another elegant approach using cubical sets.  To obtain GrayÕs original tensor product [Gy1] we
need to render all 3-cells identities, although his approach to coherence [Gy2] used the braid
groups. To see the connection, consider the braid category  B [JS2] which is the disjoint union

of all the usual braid groups as 1-object categories.  There is a 2-category  ΣB with one object,
with hom-category  B,  and with addition of braids as composition.  There is an ω-functor  P :

O I×∞ aAΣB which is universal with the property that it equates all objects, inverts all 2-cells,
and takes all 3-cells to identities.    

Dominic Verity has shown that, for a wide class of parity complexes  C, D,  we have
(O ⁄C) ⊗ (O⁄D) =  O(C⁄⁄×⁄⁄D).

There is a connection between the Gray tensor product and ordinary chain complexes.
Each chain complex ⁄⁄R ⁄⁄gives rise to an ω-category ⁄⁄ϑ (R) ⁄⁄whose 0-cells are 0-cycles ⁄⁄a∈ R0, ⁄⁄whose
1-cells  b : a aAaÕ  are elements  b ∈ R1 with  d(b) = aÕ Ð a ,  whose 2-cells  c : b aAbÕ  are
elements  c∈ R2 with  d(c) = bÕ Ð b,  and so on.  All compositions are addition.  This gives a
functor  ϑ :  DG aAω-Cat  from the category  DG  of chain complexes and chain maps.  In fact,
ϑ :  DG aAω-Cat  is a monoidal functor where  DG  has the usual tensor product of chain
complexes and  ω-Cat  has the Gray tensor product.  By applying  ϑ on homs, we obtain a (2-)
functor  ϑ∗ :  DG-Cat aAV2-Cat,  where  V2 is  ω-Cat  with the Gray tensor product.  In
particular, since  DG  is closed, it is a DG-category and we can apply  ϑ∗ to it.  The V2-category
ϑ ∗ (DG)  has chain complexes as 0-cells and chain maps as 1-cells; the 2-cells are chain
homotopies and the higher cells are higher analogues of chain homotopies.  In the next section
we shall see the importance of V2-categories in the homotopy theory of topological spaces, not
just the homotopy theory of chain complexes (which is homological algebra).     

We return now to providing the definition of the descent ω-category. Notice that the
functor  Celln : ω-Cat aASet,  which assigns the set of n-cells to each ω-category, is represented
by the free n-category  O⁄(nG)  on the n-glob.  Since the set of n-cells in an ω-category forms an
n-category, it follows that  O ⁄(nG)  is a co-n-category in the category ω-Cat.  As we pointed out
earlier, n-categories are models of a finite-limit theory. So co-n-categories are taken to co-n-
categories by right-exact functors.  It follows that  O⁄(nG) ⊗ A  is a co-n-category in  ω-Cat  for
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all ω-categories  A.
In particular,  O ⁄(nG) ⊗ Om =  O ⁄(nG) ⊗ O ⁄( 1¥(m+1))  =  O⁄ (nG × 1¥(m+1))  is a co-n-

category in  ω-Cat  for all  m ≥ 0.  Allowing  m  to vary, we obtain a co-n-category  O ⁄(nG × 1¥∗ )

in the category  [∆⁄⁄, ω-Cat ⁄⁄]  of cosimplicial ω-categories.  Hence, for any cosimplicial n-category
X⁄⁄,  we obtain an n-category

Desc X = [∆⁄⁄, ω-Cat⁄⁄](O⁄(nG × 1¥∗ ) , X⁄⁄⁄) .

We thus have our precise definition of  Desc X in somewhat more detail than in [St2].    

¤4. Weak n-categories, files and homotopy

Significant progress has been made in 1995 by Trimble-Verity [TV] on obtaining a
precise definition of weak n-category. A weak 2-category is a bicategory in the sense of B�nabou
[Bu]. A weak 3-category is a tricategory in the sense of [GPS]. Trimble [T] has a complete
definition of weak 4-category which we also call tetracategory.

We shall provide here the definition of tricategory and their homomorphisms much as
in [GPS].

A tricategory T consists of the following data:

(TD1) a set  obT whose elements are called objects of  T;

(TD2) for objects  S, T,  a bicategory  T⁄⁄⁄(⁄S⁄,⁄T ⁄)  whose objects are called arrows of  T with
source S  and target T, whose arrows and 2-cells are called 2-cells and 3-cells of  T (source and
target preserving their meanings), whose vertical composition will be written as juxtaposition,
whose horizontal composition will be denoted by  ° , and whose associativity and identity
constraints will not be given explicit names nor, at times, explicit mention (allowable by the
bicategory coherence theorem);

(TD3) for objects  S, T, U  of  T,  a homomorphism of bicategories
⊗ :  T⁄⁄⁄(⁄T⁄,⁄U ⁄)⁄⁄×⁄⁄⁄T⁄⁄⁄(⁄S⁄,⁄T ⁄)  aaaA T⁄⁄⁄(⁄S⁄,⁄U⁄) 

whose constraints will not be named (allowable by the bicategory homomorphism coherence
theorem);

(TD4) for each object  S,  an arrow  IS : S aAS  of  T ;

(TD5) for objects  S, T, U, V,  a strong transformation

T⁄⁄⁄( ⁄U⁄, ⁄V⁄)⁄⁄⁄⁄× ⁄⁄⁄T⁄⁄⁄(⁄T⁄,⁄U⁄)⁄⁄×⁄⁄T⁄⁄⁄( ⁄S⁄,⁄T⁄) T⁄⁄⁄( ⁄T⁄,⁄U⁄)⁄⁄× ⁄⁄T⁄⁄⁄(⁄S ⁄,⁄T⁄)

T⁄⁄⁄( ⁄U⁄, ⁄V⁄)⁄⁄×⁄⁄T⁄⁄⁄(⁄S⁄,⁄U⁄) T⁄⁄⁄( ⁄S⁄,⁄V⁄)
⊗

⊗ × 1

1 ×  ⊗ ⊗ ⇓ a

Page  8



which is an equivalence in the bicategory  Hom ⁄(T⁄⁄⁄(⁄U⁄,⁄V ⁄)⁄⁄×⁄⁄T⁄⁄⁄(⁄T ⁄,⁄U⁄)⁄⁄×⁄⁄T⁄⁄⁄(⁄S ⁄,⁄T⁄)⁄,⁄⁄⁄T⁄⁄⁄(⁄S⁄,⁄V ⁄)) ;

(TD6) for objects  S, T,  strong transformations

T⁄⁄⁄( ⁄T⁄,⁄T⁄)⁄⁄×⁄⁄T⁄⁄⁄( ⁄S⁄,⁄T⁄)

T⁄⁄⁄( ⁄S⁄,⁄T⁄)

⊗ 

T⁄⁄⁄( ⁄S⁄,⁄T⁄)
I   ×  1  1 ×  I

⊗ 

r l
⇐ ⇐

TST⁄⁄⁄( ⁄S⁄,⁄T⁄)⁄⁄×⁄⁄T⁄⁄⁄(⁄S⁄,⁄⁄S⁄)

1

which are equivalences in the bicategory  Hom ⁄(T⁄⁄⁄(⁄S⁄,⁄T⁄)⁄,⁄⁄⁄T⁄⁄⁄(⁄S ⁄,⁄T⁄)) ;

(TD7) for objects  S, T, U, V, W,  an invertible modification  π whose component at
(A, B, C, D) ∈ T⁄⁄⁄(V ⁄,⁄W⁄)⁄⁄×⁄T⁄⁄⁄(⁄U ⁄,⁄V⁄)⁄⁄×⁄⁄T⁄⁄⁄(⁄T⁄,⁄U ⁄)⁄⁄×⁄⁄T⁄⁄⁄(⁄S⁄,⁄T ⁄)  has source and target as in the pentagon

((A⁄⁄⊗ ⁄⁄B) ⁄⁄⊗ ⁄⁄C)⁄⁄⊗ ⁄⁄D

(A ⁄⁄⊗ ⁄⁄(B⁄⁄⊗ ⁄⁄C))⁄⁄⊗ ⁄⁄D A ⁄⁄⊗ ⁄⁄((B ⁄⁄⊗ ⁄⁄C)⁄⁄⊗ ⁄⁄D)

A ⁄⁄⊗ ⁄⁄(B⁄⁄⊗ ⁄⁄(C⁄⁄⊗ ⁄⁄D))

(A⁄⁄⊗ ⁄⁄B)⁄⁄⊗ ⁄⁄ (C⁄⁄⊗ ⁄⁄D)

a ⁄⁄⊗ ⁄⁄1

a a

a

1⁄⊗ ⁄⁄a⁄⁄

⇓ πA, B, C, D

;    and,

(TD8) for objects  S, T, U,  an invertible modification  µ whose component at  (A, B) ∈
⁄T⁄⁄⁄(⁄T ⁄,⁄U⁄)⁄⁄×⁄⁄⁄⁄T⁄⁄⁄(⁄S ⁄,⁄T⁄)  has source and target as in the square

(A⁄⁄⊗ ⁄⁄I   )⁄⁄⊗ ⁄⁄B⁄⁄ A ⁄⁄⊗ ⁄⁄(⁄⁄I   ⁄⁄⊗ ⁄⁄B)

A ⁄⁄⊗ ⁄⁄B A⁄⁄⊗ ⁄⁄B

a

r ⁄⁄⊗ ⁄⁄B A ⁄⊗ ⁄⁄l

1

⇓ µ
A, B

TT

;

subject to the following three axioms:

(TA1) (5-simplex) for all (A, B, C, D, E)∈ T⁄⁄⁄(V ⁄,⁄W⁄)⁄⁄×⁄T⁄⁄⁄(⁄U ⁄,⁄V⁄)⁄⁄×⁄⁄T⁄⁄⁄(⁄T⁄,⁄U⁄)⁄⁄×⁄⁄T⁄⁄⁄(⁄S⁄,⁄T ⁄)⁄⁄×⁄⁄T⁄⁄⁄(⁄R⁄,⁄S⁄), 
the equation 
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(((A ⁄⁄B) ⁄⁄⁄⁄C)⁄⁄⁄⁄D)⁄⁄E

((A⁄⁄(⁄B ⁄⁄⁄⁄C))⁄⁄⁄⁄D)⁄⁄E

(A(( ⁄B ⁄⁄⁄C) ⁄⁄D)) ⁄⁄E

A⁄⁄(((⁄⁄B⁄⁄C)⁄⁄D)⁄⁄E)

A⁄⁄((⁄⁄B⁄⁄(C⁄D))⁄⁄E)

A⁄⁄( ⁄⁄B ⁄⁄((C⁄D)⁄⁄E))

A⁄⁄(⁄⁄B ⁄⁄(C ⁄(⁄⁄D⁄E)))

((A⁄⁄B) ⁄⁄⁄C)⁄⁄(DE)⁄ (A⁄⁄B)⁄⁄(C( ⁄D⁄E))

(a⁄⁄⊗ ⁄⁄1)⁄⁄⊗ ⁄⁄1

a ⁄⁄⊗ ⁄⁄1

a

⁄1⊗ ⁄a

⁄1⊗ ⁄⁄⁄(⁄1⊗ ⁄⁄a⁄)⁄⁄

a
a

a

1⊗ ⁄⁄(a⁄⁄⊗ ⁄⁄1)⁄⁄

(A⁄(B⁄⁄C))⁄⁄(DE) ⁄

A⁄((B⁄⁄C)⁄⁄(DE))

≅

⇓ ⇓

⇓

π 1⁄⊗ ⁄⁄π

π

A, B⁄C, D, E B, C, D, E

A, B, C, D⁄E

1⊗ ⁄a⁄a

a ⁄⁄⊗ ⁄⁄(1⁄⊗ ⁄⁄1)

1⊗ ⁄a

a

4

(((A⁄⁄B) ⁄⁄⁄⁄C) ⁄⁄⁄⁄D)⁄⁄E

((A⁄⁄(⁄B⁄⁄⁄⁄C))⁄⁄⁄⁄D)⁄⁄E

(A((⁄B⁄⁄⁄C) ⁄⁄D)) ⁄⁄E

A ⁄⁄(((⁄⁄B⁄⁄C)⁄⁄D)⁄⁄E)

A ⁄⁄(( ⁄⁄B ⁄⁄(C ⁄D))⁄⁄E)

A⁄⁄( ⁄⁄B⁄⁄((C ⁄D)⁄⁄E))

A ⁄⁄( ⁄⁄B ⁄⁄(C ⁄(⁄⁄D ⁄E)))

((A⁄⁄B)⁄⁄⁄C)⁄⁄(DE)⁄ (A ⁄⁄B)⁄⁄(C( ⁄D⁄E))

(a⁄⁄⊗ ⁄⁄1)⁄⁄⊗ ⁄⁄1

a⁄⁄⊗ ⁄⁄1

a

⁄1⊗ ⁄a

⁄1⊗ ⁄⁄⁄( ⁄1⊗ ⁄⁄a⁄)⁄⁄

a
a

a

1⊗ ⁄⁄(a⁄⁄⊗ ⁄⁄1)⁄⁄

A(⁄B⁄⁄( ⁄C⁄⁄D)))⁄⁄E

((A⁄⁄B)⁄⁄(C ⁄⁄D)) ⁄⁄E (A ⁄⁄B)⁄⁄((C⁄⁄D)⁄⁄E)

≅

≅

⇓ ⇓

⇓

a
a

a

a⁄⁄⊗ ⁄⁄1

a⁄⁄⊗ ⁄⁄1

(1⊗ ⁄⁄⁄1)⊗ ⁄⁄a⁄⁄

(1⊗ ⁄⁄a⁄)⁄⊗ ⁄⁄1

π                  ⊗ ⁄⁄1 π

π

A, B, C, D A, B, CD, E

AB, C, D, E

holds in the bicategory  T⁄⁄⁄(⁄R⁄,⁄W⁄)  (where we have omitted some of the  ⊗ symbols for
economy);

(TA2) (left-degenerate 5-simplex)  for all  (A, B, C)∈ ⁄T⁄⁄⁄(⁄U⁄,⁄V ⁄)⁄⁄×⁄⁄T⁄⁄⁄(⁄T ⁄,⁄U⁄)⁄⁄×⁄⁄T⁄⁄⁄(⁄S⁄,⁄T⁄),  the
equation

(AB)C

((AI   )B)C

A(I   B))C

A((I   B)C)

A(BC)
A(BC)a 1

a

(r⁄⁄⊗ ⁄⁄1)⁄⁄⊗ ⁄⁄1

a⁄⁄⊗ ⁄⁄1

1⊗ ⁄⁄(l⁄⁄⊗ ⁄⁄1)⁄⁄
(AI   )(BC) A(I   (BC))

U

U

U

U

U
aa

r⁄⁄⊗ ⁄⁄(1⁄⊗ ⁄⁄1)
≅

1⊗ ⁄⁄l

⇓

⇓

⇐
1⁄⊗ ⁄⁄λ B, C

π

µ

A, I, B, C 1 ⊗ ⁄a

A, BC 

4

(AB)C

((AI   )B)C

A(I   B))C

A((I   B)C)

A(BC)
A(BC)a 1

a

(r⁄⁄⊗ ⁄⁄1)⁄⁄⊗ ⁄⁄1

a⁄⁄⊗ ⁄⁄1

1⊗ ⁄⁄(l⁄⁄⊗ ⁄⁄1)⁄⁄

U

U U

(AB)C

≅

≅µ        ⊗ ⁄⁄1A, B⇓
1

a

(1⊗ ⁄⁄l ⁄⁄)⊗ ⁄⁄1 ⁄
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holds in the bicategory  T (S⁄⁄,⁄⁄V),  where the invertible modification  λ,  with components

(I   B)C BC

I   (BC)

U

U

l ⁄⁄⊗ ⁄⁄1

l⁄⁄a
λ

B, C⇓
,

is defined by the particular case of the equality for which  U = V  and  A = IU ;  and,

(TA3) (right-degenerate 5-simplex) for all  (A, B, C)∈ ⁄T⁄⁄⁄(⁄U ⁄,⁄V⁄)⁄⁄×⁄⁄T⁄⁄⁄(⁄T⁄,⁄U ⁄)⁄⁄×⁄⁄T⁄⁄⁄(⁄S⁄,⁄T ⁄), the
equation

(AB)C

A((BI   )C) 

A(B(I   C))

A(BC)

A(BC)

a1

a

⁄1⊗ ⁄a1⊗ ⁄⁄(r⁄⊗ ⁄⁄1) ⁄
⁄

T

T

≅

1⁄⁄⊗ ⁄⁄µ  
B, C⇓

1

(AB)C

1⊗ ⁄⁄(1⊗ ⁄⁄l⁄⁄)

4

a⁄⁄⊗ ⁄⁄1
πA, B, I, C

T

(AB)C

A((BI   )C) 

A(B(I   C))

A(BC)

A(BC)

a1

a

⁄1⊗ ⁄a1⊗ ⁄⁄(r⁄⊗ ⁄⁄1)⁄
⁄

T≅

⁄⁄µ  
AB, C⇓

(AB)C

1⊗ ⁄⁄(1⊗ ⁄⁄l⁄⁄)
(A(BI   ))C

T
⁄a

((AB)I   )CT

r ⁄⁄⊗ ⁄⁄1
(1⊗ ⁄r ⁄)⊗ ⁄1 ⇒

ρ        ⊗ ⁄⁄1A, B
(AB)(I   C)Ta

a

≅
(1⊗ ⁄⁄⁄1)⊗ ⁄⁄l

⇓

holds in the bicategory  T (S⁄⁄,⁄⁄V),  where the invertible modification  ρ,  with components

AB A(BI   )

(AB)I

T

T

1⊗ ⁄r

r a
ρ

A, B⇓
,

is defined by the particular case of the equality for which  S = T  and  C = I⁄⁄S .

Suppose  T ,  L are tricategories. A homomorphism M : T aAL consists of the
following data:

(HTD1) a function  M : obTaAobL ;

(HTD2) for objects  S, T  of  T ,  a homomorphism of bicategories
M  =  MS, T :  T (S⁄⁄,⁄⁄T)  aaAL (MS⁄⁄,⁄⁄MT)

(where again the constraints are given no special names);
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(HTD3) for objects  S, T, U  of  T ,  a strong transformation

T⁄⁄⁄( ⁄T⁄,⁄U ⁄)⁄⁄⁄× ⁄⁄T⁄⁄⁄(⁄S⁄, ⁄T⁄) L⁄(⁄MT⁄,⁄MU ⁄)⁄⁄×⁄⁄L⁄⁄⁄( ⁄MS⁄,⁄MT⁄)

T⁄⁄⁄( ⁄S⁄,⁄U ⁄) L⁄⁄(⁄MS⁄,⁄MU ⁄)
M

M × M

⊗ ⊗ ⇓ b

which is an equivalence in  Hom ( T⁄⁄⁄(⁄T ⁄,⁄U⁄)⁄⁄×⁄⁄T⁄⁄⁄(⁄S⁄,⁄T⁄) ,  L⁄⁄(⁄MS ⁄,⁄⁄MU ⁄)⁄);

(HTD4) for each object  S  of  T ,  an equivalence  s : IMS
ahAM⁄IS in  L⁄⁄⁄(⁄MS ⁄,⁄⁄MS ⁄⁄);

(HTD5) for objects  S, T, U, V  of  T ,  an invertible modification  ω whose component at
(A, B, C)∈ T⁄⁄⁄(⁄U⁄,⁄V ⁄)⁄⁄×⁄⁄T⁄⁄⁄(⁄T ⁄,⁄U⁄)⁄⁄×⁄⁄T⁄⁄⁄(⁄S⁄,⁄T⁄)  is as in the hexagon

(MA⁄⁄⊗ ⁄⁄MB)⁄⁄⊗ ⁄⁄MC ⁄⁄

M(A⁄⁄⊗ ⁄⁄B)⁄⊗ ⁄⁄MC M((A ⁄⁄⊗ ⁄⁄B)⁄⁄⊗ ⁄⁄C)

M(A ⁄⁄⊗ ⁄⁄(B⁄⁄⊗ ⁄⁄C))⁄⁄

MA ⁄⁄⊗ ⁄⁄(MB ⁄⁄⊗ ⁄⁄MC)

b⁄⁄⊗ ⁄⁄1

a
b

b

M⁄⁄a⁄⁄

⇓ ω A, B, C

;    and,
MA ⁄⁄⊗ ⁄⁄M(B ⁄⁄⊗ ⁄⁄C)

1⁄⊗ ⁄⁄b

(HTD6) for objects  S, T  of  T ,  invertible modifications  γ, δ whose components at  A∈
T⁄⁄⁄(⁄S ⁄,⁄T⁄)  are

MA⁄⁄⊗ ⁄⁄I MA⁄⁄⊗ ⁄⁄MI

MA⁄⁄ M(A ⁄⁄⊗ ⁄⁄I )

1⁄⊗ ⁄⁄s

⁄r b

M r

⇑

I⁄⁄⊗ MA MI ⁄⁄⊗ ⁄⁄MA

MA⁄⁄ M(I⁄⁄⊗ ⁄⁄A )

s⁄⊗ ⁄⁄1

l b

M l

⇐δ
γ

A
A

;

subject to the following two axioms:

(HTA1) (embellished associativity pentagon) (with obvious shorthand notation)

((MAMB)MC)MD

(MABMC)MD

M(AB)CMD

M((AB)C)D M(A(BC))D

MA((BC)D)

MA(B(CD))

MAMB(CD)

MA(MB(MCD))

MA(MB(MCMD))

(MAMB)(MCMD)

b

b

b

1 ⁄⊗ ⁄⁄b

1 ⁄⊗ ⁄⁄(1 ⁄⊗ ⁄⁄b)a

M1⁄⊗ ⁄⁄a

M⁄a
M⁄a ⊗ ⁄⁄1

⁄b⊗ ⁄⁄1

(b⊗ ⁄1) ⊗ ⁄⁄1

a

MA(BC)MD
MAM(BC)D

(MAMBC)MD

(MA(MBMC))MD
MA((MBMC)MD)

MA(MBCMD)

≅

≅

≅
⇒

⇓

⇓

⇓

ω           ⊗ ⁄⁄1
A, B, C

A, BC, D
ω

1 ⁄⊗ ⁄⁄ω
B, C, D

π

⁄a ⊗ ⁄⁄1
⁄a

⁄1 ⁄⊗ ⁄⁄⁄a

1⊗ ⁄⁄b ⁄

b

a

(1⊗ ⁄⁄b ⁄) ⊗ ⁄⁄1
1⊗ ⁄⁄(b⁄⊗ ⁄⁄1)

b⊗ ⁄⁄1

1 ⁄⊗ ⁄⁄M ⁄a

4
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((MAMB)MC)MD

(MABMC)MD

M(AB)CMD

M((AB)C)D M(A(BC))D

MA((BC)D)

MA(B(CD))

MAMB(CD)

MA(MB(MCD))

MA(MB(MCMD))

(MAMB)(MCMD)

b

b

a

1⁄⊗ ⁄⁄b

1 ⁄⊗ ⁄⁄(1 ⁄⊗ ⁄⁄b)a

M1⁄⊗ ⁄⁄a

M⁄a
M⁄a ⊗ ⁄⁄1

⁄b⊗ ⁄⁄1

(b⊗ ⁄1) ⊗ ⁄⁄1

a

≅ ≅

≅

MAB(MCMD)

MABMCD

M(AB)(CD)

(MAMB)MCD

⇓

⇓

⇓ M⁄⁄π

ω

ω

AB, C, D

A, B, CD

M⁄a

M⁄a

⁄a

⁄b⊗ ⁄1

b⊗ ⁄1

1⁄⊗ ⁄⁄b

1 ⁄⊗ ⁄⁄b

(HTA2) (embellished triangle for unit)

MAMB

MAB

M(AI)B

MA(IB)

MAB

MAMB

((MA)I)MB
MA(IMB)

MAIMB

(MAMI)MB

MA(MIMB)

MAMIB
≅

≅

≅⇒

⇓

⇓
⇓

1⁄⊗ ⁄⁄b

b

b

b

b

a

a

1

Mb⊗ ⁄1 Ma

M1⊗ l

µ

1⁄⊗ ⁄⁄γ B

δ   ⊗ ⁄⁄1A

r⊗ ⁄1

1⁄⊗ ⁄⁄l

1⁄⊗ ⁄⁄(s ⁄⊗ ⁄1)⁄ 1⁄⊗ ⁄⁄M ⁄b

ω
A, I, B

(1⁄⊗ ⁄⁄s ⁄)⊗ ⁄1

b⊗ ⁄1

Mr⊗ ⁄1

4

MAMB MAB

M(AI)B MA(IB)

MAB
⇓ M⁄⁄µ

b

Mr⊗ ⁄1

M⁄a

M1⊗ l

.

It is well known what is meant for an arrow in a category to be an isomorphism ( = 1-
equivalence).  It is well known what it means for an arrow in a bicategory to be an equivalence (
= 2-equivalence).  An arrow  f : a aAb  in a tricategory is called a biequivalence ( = 3-
equivalence) when there exists an arrow  g : b aAa  such that  f g  and g f  are both equivalent
to identity arrows.  And so, recursively, we obtain the definition of n-equivalence in any weak n-
category.

Now we can define homotopy sets for any weak n-category  A.  We define  π0
⁄⁄(A)  to be

the set of n-equivalence classes of 0-cells of  A.  Let  a  be any 0-cell of  A  and let  AutEq(a)
denote the full sub-(nÐ1)-category of  A(a ⁄,⁄⁄a)  whose 0-cells are the n-equivalences  a aAa.
We define the fundamental group π1(A⁄⁄,⁄⁄a)  to be the set  π0

⁄⁄(AutEq(a))  equipped with the
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multiplication induced by the composition n-homomorphism  A(a ⁄,⁄⁄a) × A(a ⁄,⁄⁄a) aAA(a⁄,⁄⁄a).  We
recursively define homotopy groups  πn(A⁄⁄,⁄⁄a),  n > 1,  by

π⁄n+1
⁄⁄(A⁄⁄,⁄⁄a)  =  πn(AutEq(a)⁄, 1a

⁄⁄).

Now we shall introduce the notion of n-file for all n ≥ 0.  Every n-category is an n-file,
and every n-file is a weak n-category.  In fact, an n-file is precisely an n-category for n < 3.  A 3-
file is a Gray-category in the sense of [GPS]. 

The definition of n-file is quite straightforward, using familiar concepts from category
theory [EK], [D1], [D2].

We have already defined the Gray monoidal structure on  ω-Cat.  Let us denote this
biclosed monoidal category by  V2

⁄⁄ to distinguish it from the cartesian closed category  ω-Cat
which might be denoted by  V1

⁄⁄.  From the union of the equations  (n+1)-Cat = (nÐCat)-Cat  we
obtain  V1-Cat = V1 .  However,  V2-Cat  provides creatures more general than n-categories. A
V2-category  A  consists of objects, and, for each pair of objects  a, b,  a hom-ω-category  A(a⁄,⁄⁄b);
however, we have composition ω-functors  

A(a ⁄,⁄⁄b) ⊗ A(b⁄,⁄⁄c) aAA(a⁄,⁄⁄c)  
defined on the Gray tensor product rather than  A(a⁄,⁄⁄b) × A(b⁄,⁄⁄c) aAA(a⁄,⁄⁄c)  defined on the
cartesian product. Cells can be defined in  A  just as for n-categories, and let us suppose  A  is 3-
dimensional (that is, all 4-cells in  A  are identities). There is a composition of 1-cells coming
from the above displayed ω-functor, however, it does not extend to the Òhorizontal
compositionÓ of 2-cells  σ : f ⇒ f⁄⁄Õ : a aAb,  τ : g ⇒ gÕ : b aAc⁄ except when either  σ or  τ is
an identity.  Thus we obtain the boundary of a square of 2-cells

f  g

f '  g'f '  g

f  g'
f τ

f ' τ

σ g σ g'
c

σ , τ

⇒

in the 2-category  A(a ⁄,⁄⁄c).  What the above displayed composition ω-functor does provide is the
structural 3-cell  cσ

⁄
,
⁄⁄
τ as shown in the square.  

A 3-file is a 3-dimensional V2-category in which all the structural 3-cells  cσ
⁄
,
⁄⁄
τ are

invertible.  These are the Gray-categories of [GPS].

Theorem [GPS] Every tricategory is 3-equivalent to a 3-file.

Recall that the tensor product of  V2 was induced from the dense full subcategory  Q

consisting of the ω-categories  O⁄⁄(⁄I ⁄×⁄n⁄).  Every ω-category is certainly a V2-category and  Q is a

full subcategory of  V2-Cat. 
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Conjecture 1. Q is dense in  V2-Cat, and, more generally, in all the categories  Vn defined below.

DayÕs construction now allows us to extend the monoidal structure on  Q to a biclosed
monoidal structure  V2-Cat⁄⁄.  Let  V3 denote  V2-Cat  with this monoidal structure.  Conjecture
1 recursively implies that the process continues providing biclosed monoidal  Vn for all  n ≥ 1.
By construction, each object of  Vn has an underlying globular set (that is, cells make sense).
An n-file is an n-dimensional object of  Vn in which the structural cells are equivalences.  A file
is an n-file for some n.  The following rather ambitious generalisation of the [GPS] theorem will
require vastly new techniques. 

Conjecture 2. Every weak n-category is n-equivalent to an n-file.

Write ⁄⁄Fil ⁄⁄for the category of files.  Each  Vn is a full subcategory of  Fil.  In particular,
n-categories are files.  However, we need to look at morphisms between files which are weaker
than those coming from enriched category theory, namely, those which do not necessarily
preserve the structural cells like  cσ

⁄
,
⁄⁄
τ .  Every file  A  has a nerve: the nerve  N(A)  of  A  is the

simplicial set whose elements of dimension  n  are these weaker morphisms  On
aAA  where

On is the n-th oriental.
By way of illustration we shall look at  N(A)4 in the case where  A  is a Gray category.

Recall that  O4 is the free 4-category on the parity 4-simplex.

⇒

⇓

⇐ ⇓
⇓

⇐

⇓
⇒ ⇒

⇓ ⇓
⇓ ⇓

⇓ ⇓

A weak morphism  f :  O4
aAA  will take the 4-cell in the middle of the big pentagon into an

identity (since  A  is 3-dimensional). But  f  is not required to preserve horizontal composition of
2-cells; yet one such composite does occur in the top small pentagon
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⇒
⇓

⇐

because the 2-cells pointing left and right are horizontally composable.  What this means is that
a structural isomorphism  cσ

⁄
,
⁄⁄
τ is introduced into the pentagon when viewed in  A ;  the picture

for  f :  O4
aAA  is therefore a hexagon in A.  This will be important to remember when we look

at fusion operators in [St5].

Proposition The nerve functor N : Fil aA[∆op, Set]  commutes with πn for all  n ≥ 0.

We already remarked that  N : ω-Cat aA[∆op, Set]  is not full so neither can  N : Fil
aA[∆op, Set]  be full.  Simplicial maps  f : N(A) aAN(B)  are normal lax functors between the
files  A  and  B⁄.  Using the familiar process of replacing a map by an inclusion using a mapping
cylinder, we see that each such normal lax functor gives rise to a long exact homotopy sequence.

  πn(A,a)
f∗

 → πn(B, f (a))→ πn(f,a)→ πn−1(A,a)
f∗

 → πn−1(B, f (a))

Given Conjecture 2, we can define, up to homotopy, the nerve of a weak n-category to be
the nerve of an n-equivalent n-file.

A similar approach can be taken to extending the definition of cohomology and descent
as we have done for extending nerve to weak n-categories.  If  X : ∆ aAFil  is a cosimplicial
file, we define

Desc X =  [∆⁄⁄, Fil⁄](O ⁄(nG × 1¥∗ ) , X⁄⁄⁄) .
However, I have not yet had time to investigate what the inclusion  ω-Cat aAFil  does to

pushouts. If it preserved pushouts then  O⁄(nG × 1¥∗ )  would be a co-ω-category in  Fil  so that

Desc X would be an ω-category.  My feeling is that  Desc X should be merely a file.  Then we
would, in the obvious way, define the cohomology file  H⁄(R⁄⁄,⁄⁄A)  of  R  with coefficients in a file
A.  To generalise from files to weak n-categories again requires Conjecture 2. 

A homotopy type is a file in which all n-cells, n > 0, are invertible.  There is a category
HoT  of homotopy types and isomorphism classes of file morphisms.  While we are speculating,
we might as well submit a third conjecture.  

Conjecture 3. The restriction N : HoT aA[∆op, Set]  of the nerve functor induces an equivalence
between  HoT and the usual homotopy category of simplicial sets.
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¤5. Brauer groups

Let  M denote a closed braided monoidal category which is finitely cocomplete.  We
have in mind that  M is the category of modules over a commutative ring  R,  or the category of
finite dimensional comodules for a quantum group.  Consider the bicategory  AlmM whose
objects are monoids (also called ÒalgebrasÓ) in  M ,  whose arrows  M : A aAB  are left A- right
B-modules, and whose 2-cells  f : M ⇒ M⁄⁄Õ : A aAB  are module homomorphisms  f : M
aAM ⁄⁄Õ; vertical composition is composition of functions and horizontal composition of
modules  M : A aAB ⁄⁄,  N : B aAC  is given by tensor product  M ⊗ B N : A aAC  over  B  (
M ⊗ B N  is the coequalizer of the two arrows from  M ⊗ B ⊗ N  to  M ⊗ N  given by the actions
of  B  on  M  and on  N ).

Since  M is braided, the tensor product  A ⊗ B  of algebras is canonically an algebra.
This makes  AlmM into a monoidal bicategory.  Let  ΣAlmM denote the 1-object tricategory
whose hom bicategory is  AlmM and whose composition is tensor product of algebras.

In the particular case of the tricategory  ΣAlmM,  there it is an easy way to find a 3-
equivalent Gray category (= 3-file).  First replace  M by an equivalent strict monoidal category

(see [JS2]).  Then identify modules  M : A aAB  with left adjoint functors  [Aop, M⁄⁄⁄] aA[Bop,

M⁄⁄⁄]  where  [Aop, M ⁄⁄⁄]  is the category of right A-modules in  M ⁄⁄.  The point is that tensor
product  M ⊗ B N  of modules then becomes composition of functors.

Let ⁄⁄Br(M⁄⁄) ⁄⁄denote the sub-3-file of ⁄⁄Σ AlgM ⁄⁄consisting of the arrows ⁄⁄A ⁄⁄which are bi-
equivalences, the 2-cells ⁄⁄M ⁄⁄which are equivalences, and the 3-cells ⁄⁄f ⁄⁄which are isomorphisms.
The arrows  A  of  Br(M⁄)  are called Azumaya algebras in  M.  The 2-cells  M  of  Br(M⁄⁄)  are called
Morita equivalences in  M.

We can form the nerve  N Br(M⁄⁄)  of  Br(M⁄⁄).  It is a simplicial set whose homotopy
objects are of special importance.  In particular,  π0 N Br(M⁄⁄)  is a singleton set,  π1 N Br(M⁄⁄)  is
called the Brauer group Br(M) of M,  and  π2 N Br(M⁄⁄)  is the Picard group  Pic(M) of M.  If  M is
equivalent to  Mod(R)  for a commutative ring  R,  these are the usual Brauer and Picard groups
of  R;  also  π3 N Br(M⁄⁄)  is then isomorphic to the group  υ(R)  of units of  R.  Compare the
approach of Duskin [Dn1].

Now suppose  F : MaAN is a right-exact braided strong-monoidal functor between
finitely cocomplete closed braided monoidal categories.  (We have in mind the functor  Mod(f) :
Mod(R) aAMod(S)  induced by a commutative ring homomorphism  φ : R aAS⁄.)  Such an  F
determines a homomorphism of tricategories   AlmF : AlmM aAAlmN⁄⁄.  Homomorphisms
preserve n-equivalence for all n.  So a homomorphism  Br(F ⁄⁄) : Br(M⁄⁄) aABr(N⁄⁄)  is induced,
and thus we induce a simplicial map  NBr(F⁄⁄) : NBr(M⁄⁄) aANBr(N⁄⁄).  This proves that we have
the nine term exact sequence
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1 → Aut(IM )
F∗ → Aut(IN )  → Aut(F)  → Pic(M ) F∗ → Pic(N )

 → Pic(F)  → Br(M ) F∗ → Br(N )  → Br(F)  → 1
in which  Aut⁄⁄(IM ) denotes the abelian group of automorphisms of the unit  IM for the tensor
product in  M.  Compare with [DI] when  M = Mod(R).

¤6. GiraudÕs  H 2 and the pursuit of stacks

We use DuskinÕs [Dn2] amelioration of GiraudÕs theory [Gd] to show that GiraudÕs  H⁄2

really fits into our general setting for cohomology.  We work in a topos  E.
A groupoid  B  in  E is connected when  π⁄0 ⁄B  ≅ 1.

Lemma Locally connected implies connected.

Proof If  R aå1  is an epimorphism (Òa coverÓ) then the functor  R × Ð :  E aAE/R  is
reflects isomorphisms (that is, is conservative), and preserves terminal objects and coequalizers.
Hence it also reflects coequalizers. So, to see whether

B B 11 0

is a coequalizer in  E,  it suffices to see that

 R1 0R × BR × B

is a coequalizer in  E/R .qed

A functor  f : A aAB  in  E is called eso (essentially surjective on objects) when the top
composite  of  q  and  d1  in the diagram below is an epimorphism  P aåB 0 (here  I is the
category with two objects and an isomorphism between them).

P

A

B
I

B

B 0

0 0

0

pull
backp

q d

f

d
0

0

1

A groupoid  B  is called a weak group when there exists an eso  b : 1 aAB.  In this case,
if  G  denotes the full image of  b,  we have a weak equivalence (that is, eso fully faithful
functor)  G aAB  where  G  is a group. 

Lemma A groupoid is connected iff it is a locally weak group.

Proof By the last Lemma, ÒifÓ will follow from Òweak group implies connectedÓ. Suppose  b :
1 aAB  is eso and form the pullback  P  as above with  A = 1  and  f = b.  To prove
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B B 11 0

d
0

d1

t

is a coequalizer, suppose  h : B0
aAX  has  h d0 = h d1 .  Then

h d1 q  =  h d0 q  =  h b p  =  h b t d1 q
implies  h = h b t  since  d1 q  is epimorphic.  So  h  factors through  t.  But  t  is a retraction (split
by  b),  so the factorization is unique.

Conversely, assume  B  is connected. Certainly  B0
aAX  is epimorphic,  so we pass to

E/B0 where we pick up a global object  ∆ : B0
aA B0 × B  over  B0 which we will see is eso.

B

B

B   × B0

0

0

pull
backd 0

0

1
B   × B0B 1 1

∆

1 ×  d0

1 ×  d

What we must see then is that  (d0 , d1 ) : B1
aAB0 × B0 is epimorphic.  Factor  (d0 , d1 ) : B1

aAB0 × B0 as  B1
aåK ÅAB0 × B0 .  Since  B  is a groupoid,  K  is an equivalence relation on

B0 .  Since  E is exact,  K  is a kernel pair of its coequalizer. The coequalizer is  1  since  B  is
connected. So the kernel pair is  B0 × B0 .qed

Recall that the category of groups in a category with finite products is actually a 2-
category since group homomorphisms can be regarded as functors, so there are 2-cells
amounting to natural transformations.  (In fact, we can make it a 3-category by taking central
elements of the target group as 3-cells, but this will not be needed here.) So we have a 2-functor

Gp : Cat⁄×aA2-Cat 
from the 2-category  Cat ⁄× of categories with finite products and product-preserving functors. 

There is a homomorphism of bicategories  E/Ð : E ⁄op aACat  taking an object  X  of  E

to the slice category  E/X  and given on arrows by pulling back along the arrow.  It is easy to

find an actual 2-functor  E : E ⁄op aACat  equivalent to  E/Ð⁄⁄⁄.  The composite 2-functor

    E
op E

 → Cat ×
Gp

 → 2 − Cat
defines a 2-category  G in the category  [E⁄op, Set].

It is natural then to look at the cohomology 2-category  H⁄⁄(E, G)  of  E with coefficients
in  G.  What I mean by this is the colimit of all the 2-categories  H⁄⁄(R⁄, G)  over all hypercovers  R
in  E,  which we regard, via the Yoneda embedding, as simplicial objects in the category

[E ⁄op, Set].  
What Giraud actually looks at is obtained from  H ⁄⁄(E, G)  by lots of quotienting.  First

form the composite 2-functor
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   E
op G

 → 2 − Cat
π 0 ∗

 → Cat
where  π0∗ is the 2-functor which applies  π0 to the hom categories of each 2-category.  Let  L :

E ⁄op aACat  denote the associated stack of that composite 2-functor.  The category  L(X)  is

called the category of X-liens of E;  in particular,  L(1)  is the category of liens of  E.
The stack condition implies that each epimorphism  R aå1  induces an equivalence

between the category  L(1)  of liens and the descent category of the following truncated
cosimplicial category.

L(R) L(R × R) L(R × R × R)

Each connected groupoid  B  determines a lien  lien(B)∈ L(1)  as follows.  By the last
Lemma, there exists an epimorphism  R aå1  and  G∈ π 0∗ G(R).  The quotient functor  π0∗ G(R)
aAL(R)  gives an R-lien  [G]∈ L(R)  which can be enriched with descent data.  These descent

data are determined up to isomorphism by  B.  It follows that there is a lien  lien(B)∈ L(1)  taken
to  B  by the functor  L(1) aAL(R).

For any lien  L,  let  H ⁄⁄2(E ⁄⁄, L)  denote the category whose objects are connected
groupoids  B  with  lien(B) ≅ L,  and whose arrows are weak equivalences of groupoids.  We
leave as an open problem to study the connection between the 2-category  H⁄⁄(E, G)  and the
categories  H⁄⁄2(E⁄⁄, L).
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