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Introduction

While this paper is the second in a couplet, our intention is to make it as independent as
possible of the detailed constructions in the first paper [JS2].  Of course, some familiarity with
the spirit and applications of the first paper would be a help and this can be obtained from
[JS4], [St2] and [JSV].  We shall provide the definitions and results of [JS2] as they are needed
here; we hope these extra explanations, uncluttered by detailed proofs, will be a useful adjunct.

As foreshadowed in [JS2], this paper gives the precise modification of the string
diagrams in monoidal (also called “tensor”) categories required to accommodate the existence
of dual objects. This modification should be geometrically natural and should lead to a
geometric model of the free monoidal structures.  A monoidal category in which each object
has both a left and a right dual is called autonomous⁄⁄⁄⁄(also called “rigid”). For the case of
autonomous monoidal categories, a preprint [JS0] has been available for many years on request.
That preprint expresses its results in terms of piecewise-linear strings.  In view of our move to
smooth strings in [JS2], we have decided to continue here with smooth strings.  This allows us
to make use of some results from Morse theory to avoid detailed combinatorial case analyses.

Besides the autonomous case, we deal with the diagrams for pivotal, spherical and tortile
monoidal categories.
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CHAPTER 1: Progressive Diagrams and Surgery

This chapter reviews relevant definitions and results from [JS2], and proves some simple
results on surgery of string diagrams. 

Section 1.1   Progressive plane diagrams

A graph with boundary G = ( ⁄G⁄⁄,⁄⁄G0
⁄⁄,⁄⁄∂G)  consists of a compact Hausdorff topological space

G,  a discrete closed subset  G0
⁄⁄Õ G such that the complement  G1 =  G – G0 is a topological sum

of open intervals (called edges of  G)  and circles (called circles of G),  and a subset  ∂G⁄⁄Õ ⁄⁄⁄G0 such
that each  xŒ∂G has a sufficiently small connected neighbourhood  V  in  G for which  V – { x }
has a single connected component.  The elements of  G0 , ∂G, G0 –  ∂G are called the nodes, outer
nodes, inner nodes of G, respectively. (We often ignore the outer nodes: each outer node can be
identified with the unique edge whose closure it is in.) An isomorphism f : G aAW of graphs
with boundary is a homeomorphism inducing bijections on the inner and on the outer nodes.   

Let  a < b  be real numbers. A progressive plane graph between the levels a  and b  is a graph
G with boundary embedded in  R ⁄⁄¥⁄⁄⁄ [a⁄⁄,⁄⁄b]  such that  ∂G = G « (⁄R ⁄⁄¥⁄⁄⁄ {a⁄⁄,⁄⁄b})  and the second
projection  pr2 :  R ⁄⁄¥⁄⁄⁄ [a⁄⁄,⁄⁄b] aA[a⁄⁄,⁄⁄b]  is injective on each connected component of  G – G0 .  It
follows that  G can have no circles or circuits.  A valuation  v : G aAV of such a graph in a
monoidal category  V is a pair of functions

v0 :  G1
aAobj⁄⁄V ,       v1 : G0 –  ∂GaAarr⁄⁄V,

such that, for all inner nodes  x  of  G,  
v1(x) : v0

⁄(g1
⁄) ƒ . . . ƒ v0

⁄(gm
⁄)  aA v0

⁄(d1
⁄) ƒ . . . ƒ v0

⁄(dn
⁄)

where  g1
⁄, . . . , gm, d1

⁄⁄, . . . , dn are the edges whose closures contain  x  and arranged so that
their relationship to the canonical orientation of  R ⁄⁄¥⁄⁄⁄ [a⁄⁄,⁄⁄b]  is as shown in the diagram below.

x

.   .   .

g
1

g
2

g
m

.   .   .

d1 d
2

d n

A progressive plane diagram (⁄G,⁄⁄v)  in a monoidal category  V consists of a progressive plane
graph  G together with a specified valuation  v.  We consider the valuation to assign to an outer
node the same object of  V as is assined to the edge whose closure the outer node is in.  The
domain dom⁄⁄(⁄G,⁄⁄v)ŒobjV of the diagram is the tensor product of the values of the outer nodes
on the line  y = a  taken in left-to-right order;  the codomain cod⁄(⁄G,⁄⁄v)ŒobjV is similarly
obtained from the outer nodes on the line  y = b.    

Each progressive plane diagram  ( ⁄G,⁄⁄v)  has a value v(G) : dom(⁄G,⁄⁄v) aAcod(⁄G,⁄⁄v)  which
is an arrow in  V obtained as follows. Cover  G in  R ⁄⁄¥ ⁄⁄⁄[a⁄⁄,⁄⁄b]  by rectangles  R⁄⁄i j of the form
shown in the diagram below such that the horizontal lines meet no nodes of  G ,  the vertical
lines do not meet  G,  and, for each rectangle  R⁄⁄i j⁄⁄,  the diagram  G⁄⁄«⁄⁄R⁄⁄i j is either prime (that is, it
is connected and contains precisely one inner node) or invertible (that is, contains no inner
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nodes).  

a

b

R R

R

R

R

R R

1 1 1 2

2 1 2 2

3 1 3 2 3 3

R
1 3

Then we use composition to define
v(G)  =  v(G⁄⁄«⁄⁄R⁄⁄1) ∞ v(G⁄⁄« ⁄⁄R⁄⁄2) ∞ v(G⁄⁄«⁄⁄R⁄⁄3) ∞ . . .

and tensor product to define
v(G⁄⁄« ⁄⁄R⁄⁄i⁄⁄)  =  v(G⁄⁄« ⁄⁄R⁄⁄i 1⁄) ƒ v(G⁄⁄«⁄⁄R⁄⁄i 2 ⁄) ƒ v(G⁄⁄«⁄⁄R⁄⁄i 3⁄) ƒ . . .

where the value of a prime diagram with node  x  is just  v1
⁄(x),  and the value of an invertible

diagram with edges  g1
⁄, . . . , gm (ordered from left to right in the plane) is the identity arrow of

the tensor product  v0
⁄(g1
⁄) ƒ . . . ƒ v0

⁄(gm
⁄).  It is shown in [JS2] that this definition does not

depend on the choice of rectangles. In fact, [JS2] shows that the value is invariant under
“deformation” in the sense to be explained below. 

Remark 1.1.1 In the definitions of valuation and value we have written as if  V were a strict
monoidal category.  All that is required if  V is not strict is to make a choice from the “clique”
of bracketings of the source tensor product and from that for target to obtain a unique arrow as
the value.     

Let  G be a graph with boundary. A deformation of progressive plane graphs (between levels
a  and  b)  is a continuous function

h  :  G ¥ ⁄⁄[0⁄⁄,⁄⁄1] aA R ⁄⁄¥ ⁄⁄⁄ [a⁄⁄,⁄⁄b]
such that, for all  tŒ⁄[0⁄⁄,⁄⁄1],  the function  h⁄⁄(–⁄⁄,⁄⁄t)  :  G aAR ⁄⁄¥ ⁄⁄⁄⁄⁄[a⁄⁄,⁄⁄b]  is an embedding whose
image is a progressive plane graph  G(t)  between the levels  a  and  b.  A valuation on any  G(t⁄0)
transports across the canonical h-induced isomorphism  G(t⁄0 ⁄) @ G @ G(t)  to a valuation on each
graph  G in which case  h  is called a deformation of progressive plane diagrams.

Theorem 1.1.2 [JS2] If  h : ⁄⁄G⁄⁄¥ ⁄⁄⁄⁄[0⁄⁄,⁄⁄1] aAR ⁄⁄¥⁄⁄⁄⁄⁄[a⁄⁄,⁄⁄b]  is a deformation of progressive plane

diagrams in a monoidal category  V then

Page  3



v(G(0))  =  v(G(1)).

We now consider surgery of plane diagrams.  An incision in a progressive plane graph  G
is a standard rectangle  R  =  [a⁄⁄,⁄⁄b ⁄] ¥ ⁄⁄[c⁄⁄,⁄⁄d]  Õ R ⁄⁄¥ ⁄⁄⁄⁄⁄[a⁄⁄,⁄⁄b]  whose horizontal sides  [a⁄⁄,⁄⁄b ⁄] ¥ ⁄{ y }
contain no inner nodes of  G and whose vertical sides  { x } ¥ ⁄⁄[c⁄⁄,⁄⁄d]  do not meet  G.

Theorem 1.1.3 Suppose R  is an incision for two progressive plane diagrams  (⁄G,⁄⁄v)  and (⁄W,⁄⁄w).  If
the embedded graphs G, W are equal outside R,  if the valuations v, w agree on nodes outside  R,
and if v(⁄G⁄⁄«⁄R)  =  w(⁄W ⁄⁄«⁄R),  then v(⁄G)  =  w(⁄W)⁄⁄.

Proof Deform the common part of the diagrams outside  R  so that the two whole lines x = c
and  x = d,  containing the horizontal sides of  R,  contain no nodes.  Then there are arrows  f ⁄⁄, g
such that  v(⁄G) = f ∞ v(⁄G⁄⁄«⁄⁄[c⁄⁄,⁄⁄d]) ∞ g  and  w(⁄W) = f ∞ v(⁄W⁄⁄«⁄⁄[c⁄⁄,⁄⁄d]) ∞ g.  But also there are arrows
h, k  such that  v(⁄G⁄⁄«⁄⁄[c ⁄⁄,⁄⁄d]) = h ƒ v(⁄G ⁄⁄«⁄R) ƒ k  and  w(⁄W⁄⁄«⁄⁄[c ⁄⁄,⁄⁄d]) = h ƒ w(⁄W⁄⁄«⁄R) ƒ k,  and we
have the required result.qed

Section 1.2   Progressive 3D diagrams

Let  a < b  be real numbers.  The front projection fr : R⁄⁄2⁄⁄¥ ⁄⁄⁄[a⁄⁄,⁄⁄b] aAR ⁄⁄¥⁄⁄⁄[a⁄⁄,⁄⁄b]  is given by
fr⁄⁄(x⁄⁄,⁄⁄y ⁄⁄,⁄⁄z) = ⁄(x ⁄⁄,⁄⁄z).  A progressive polarised (smooth) 3D graph between the levels a  and b  is a
smooth embedded graph  G with boundary in  R ⁄⁄2⁄⁄¥ ⁄⁄⁄[a⁄⁄,⁄⁄b]  such that  

(i)  ∂G = G « (⁄R⁄⁄2 ⁄⁄⁄⁄¥⁄⁄⁄{a⁄⁄,⁄⁄b})  and the edges meet  ⁄R ⁄⁄2 ⁄⁄⁄⁄¥⁄⁄⁄{a⁄⁄,⁄⁄b}  transversally,
(ii)  the second projection  pr2 :  R ⁄⁄2⁄⁄¥ ⁄⁄⁄[a⁄⁄,⁄⁄b] aA[a⁄⁄,⁄⁄b]  is a smooth embedding on

each connected component of  G – G0 ,  and  
(iii)  for any pair of distinct edges with a common node  x  in their closures, the

unit tangents at  x  to the front projections of the two edges are distinct.
It follows here too that  G can have no circles or circuits.  A valuation  v : GaAV of such

a graph in a braided monoidal category  V is defined exactly as in the plane case except that
here  we apply the front projection to get into  R⁄⁄¥ ⁄⁄⁄[a⁄⁄,⁄⁄b]  and so obtain a partition of the edges
at each node into two linearly ordered sets.  A progressive polarised (smooth) 3D diagram (⁄G,⁄⁄v)  in
a braided monoidal category  V consists of a progressive plane graph  G together with a
specified valuation  v.   

Each progressive polarised 3D diagram  (⁄G,⁄⁄v)  has a value -v(G)  that is an arrow in an
extension  _V of  V which needs some explanation. To begin with, the outer nodes of  G in the
plane  z = a  have no canonical order so that we have no guide as to how to form their tensor
product to obtain  dom(⁄G,⁄⁄v);  these outer nodes on  z = a  form a finite set of points in the
plane. This leads us to consider the topological space⁄⁄⁄⁄⁄⁄C ⁄⁄⁄⁄⁄⁄of configurations of distinct points in R⁄⁄2;
a point of  C  is a finite subset  S  of points in  R ⁄⁄2;  this is the topological sum, for all  n ≥ 0, of
the usual configuration spaces  Cn of n-element subsets of  R⁄⁄2.  We write  r(n)  for the finite set
of points  1, 2, . . . , n  on the x-axis.  Note that the braid category  B is the groupoid whose
objects are the natural numbers and whose arrows  m aAn  are the arrows  r(m) aAr(n)  in
the fundamental groupoid  p1

⁄C  of  C  (of course, there are no such arrows unless  m = n⁄⁄).  If
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we have a family of objects  A⁄s of  V with  sŒSŒC  then each arrow  a : r(m) aAS   in  p1
⁄C

determines a canonical isomorphism
·aÒ :  Aa(1) ƒ . . . ƒ A a(m)

aAA1 ƒ . . . ƒ Am

where  a : { 1, 2, . . . , m } aAS  is the bijection determined by the path  a⁄⁄.
Now we can define the category  _V.  The objects are families  (A ⁄s Ω sŒS )  of objects  A ⁄s

of  V indexed by finite subsets  SŒC  of  R⁄⁄2.  An arrow  [a⁄⁄, f⁄⁄, b ⁄⁄] : (A⁄s Ω sŒS ) aA(B ⁄t Ω tŒT )  is
an equivalence class of triplets  (a ⁄⁄, f⁄⁄, b)  consisting of arrows  a : r(m) aAS , b : r(n) aAT  in
p1
⁄C  and an arrow  f  :  Aa(1) ƒ . . . ƒ Aa (m)

aABb(1) ƒ . . . ƒ Bb(n) in  V;  two such triplets  (a ⁄⁄, f⁄⁄,

b), (a’⁄⁄, f⁄⁄’⁄⁄, b’)  are equivalent when  ·bÒ ∞ f ∞ ·aÒ⁄-1 = ·b’Ò ∞ f⁄⁄’ ∞ ·a’Ò⁄-1 .  It is worthwhile noting that
an arrow in  _V is uniquely determined by a triple  (a⁄⁄, f⁄⁄, b)  for which the domains  M, N  of the
arrows  a : M aAS , b : N aAT  are arbitrary subsets of the x-axis with the same cardinalities
as  S, T,  respectively; for, there are canonical arrows  r(m) aAM , r(n) aAN  obtained by
sliding points along the x-axis as on an abacus. Regarding each object  A  of  V as a family
indexed by  r(1),  we obtain an inclusion  VaA_V which is an equivalence of categories.

The sets of outer nodes of  G in the planes  R ⁄⁄2 ⁄⁄¥⁄⁄{⁄⁄a⁄⁄},  R ⁄⁄2⁄⁄¥ ⁄⁄{⁄⁄b⁄⁄}  determine elements
domG, codGŒC,  respectively.  Thus we have objects

dom( ⁄G,⁄⁄v) = ( v0(p) Ω pŒdomG ),     cod(⁄G,⁄⁄v) = ( v0(p) Ω pŒcodG )
of the category  _V.  

We shall define the value of  ( ⁄G,⁄⁄v)  as an arrow  
-v(G) : dom(⁄G,⁄⁄v) aAcod(⁄G,⁄⁄v) 

in  _V.  We build up to this in four steps.  
(i) Suppose the diagram is invertible; that is, has no inner nodes. Then we obtain an

arrow  g : domG aAcodG in  p1
⁄C  whose underlying bijection  g is compatible with the

valuation. The identity arrows  v0(a(i)) aAv0(g(a(i)))  for  a : r(n) aAdomG and  iŒr(n),
determine  -v(G) : dom(⁄G,⁄⁄v) aAcod(⁄G,⁄⁄v)  in  _V.  

(ii) Suppose the diagram  ( ⁄G,⁄⁄v)  is prime; that is, it is connected, it has precisely one inner
node, and the restriction of the front projection to  G is an injective function. We put  -v(G) =
v(p)  where  p  is the inner node. This is an arrow of  V and hence of  _V.  

(iii) Suppose there is a finite set of disjoint standard1 rectangles  R1, R2, . . . , Rr in the
plane  R ⁄⁄2 such that  G is covered by the rectangles  R⁄h⁄⁄¥ ⁄⁄⁄⁄[a⁄⁄,⁄⁄b],  h = 1, 2, . . . , r⁄⁄,  and that the
part  (Gh

⁄⁄,⁄⁄vh
⁄⁄)  of  (⁄G,⁄⁄v)  in each rectangle  R⁄h is either invertible or prime. Take a path  a : r(m)

aAdomG such that  i £ j⁄⁄,  a(i)ŒR⁄h,  a(j)ŒR⁄k imply  h £ k;  and take a similar path  b : r(n)
aAcodG.  Paths  a h : M⁄h aAdomGh ,  bh : Nh

aAcodGh are then obtained by restriction of
a, b.  The value  -vh(Gh) : domGh

aAcodGh is uniquely determined by a triplet of the form  (ah ,
f⁄h , bh

⁄)  for  all  h = 1, 2, . . . , r.  The arrow  -v(G) : dom(⁄G,⁄⁄v) aAcod(⁄G,⁄⁄v)  in  _V is defined to be
[a , f , b⁄]  where  f = f1 ƒ f⁄2 ƒ . . . ƒ f⁄r .  

(iv) In general, there exists a partition  a = u0 < u1 < u2 < . . . < uk = b  such that the
restriction  (Gi , v⁄i )  of  (⁄G,⁄⁄v)  to each layer  R ⁄⁄2 ⁄⁄¥ [u⁄i–1 , u⁄i ]  satisfies the hypothesis of (iii).
Define the value of  ( ⁄G,⁄⁄v)  to be the composite
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-v(G)  =  -vk(Gk) ∞ . . . ∞ -v2(G2) ∞ -v1(G1)
in  _V.

The value so defined is independent of the choices involved [JS2].  

Remark 1.2.1 In order to obtain a value of  (⁄G,⁄⁄v)  which is actually an arrow  v(G)  in  V,  we
need to anchor the diagram by providing arrows  a : r(m) aAdomG,  b : r(n) aAcodG;  then
v(G)  is determined by the equation

-v(G)  =  [a , v(G) , b ⁄].  //

A deformation of progressive polarised (smooth) 3D graphs is a continuous function
h : ⁄⁄G⁄⁄¥ ⁄⁄⁄⁄[0⁄⁄,⁄⁄1] aAR ⁄⁄2⁄⁄¥ ⁄⁄⁄⁄⁄[a⁄⁄,⁄⁄b]

such that, for all  tŒ ⁄[0⁄⁄,⁄⁄1],  the function  h(–⁄,⁄⁄t) : ⁄⁄G aA R ⁄⁄2⁄⁄¥ ⁄⁄⁄⁄⁄[a⁄⁄,⁄⁄b]  is a smooth embedding
whose image  G(t)  is a progressive polarised 3D graph, and, for each edge  g of  G (smoothly
parametrized by  g(s), sŒ⁄[0⁄⁄,⁄⁄1])

  

d
ds

h(g (s), t)

is a continuous function on  ⁄[0⁄⁄,⁄⁄1] ¥ ⁄[0⁄⁄,⁄⁄1].  As in the plane case this leads to the notion of
deformation of progressive polarised 3D diagrams.

Theorem 1.2.2 [JS2] If  h : ⁄⁄G⁄⁄¥ ⁄⁄⁄⁄[0⁄⁄,⁄⁄1] aA R ⁄⁄2⁄⁄¥ ⁄⁄⁄⁄⁄[a⁄⁄,⁄⁄b]  is a deformation of progressive polarised

3D diagrams in a braided monoidal category  V then the square

( v(p) Ω pŒ dom G(0) ) ( v(p) Ω pŒ dom G(1) )

( v(q) Ω pŒcod G(1) )( v(q) Ω qŒcod G(0) ) k

k

v(G(0)) v(G(1))– –

in _V commutes, where the horizontal isomorphisms are induced by the paths t jAdom G(t),
tjAcod G(t)  in the configuration space C.

We now consider surgery of 3D diagrams.  An incision in a progressive polarised 3D
graph  G is a standard rectangle  R  =  [a ⁄⁄,⁄⁄b ⁄]⁄⁄¥⁄⁄⁄⁄[g⁄⁄,⁄⁄d⁄]⁄⁄¥ ⁄⁄[c ⁄⁄,⁄⁄d]  Õ R ⁄⁄2⁄⁄⁄¥ ⁄⁄⁄⁄⁄[a⁄⁄,⁄⁄b]  whose horizontal
sides  [a⁄⁄,⁄⁄b ⁄]⁄⁄¥⁄⁄⁄⁄[g⁄⁄,⁄⁄d⁄] ¥ ⁄{ z }  contain no inner nodes of  G and whose vertical sides  { x } ⁄⁄¥⁄⁄⁄⁄[g⁄⁄,⁄⁄d⁄]⁄⁄¥
⁄⁄[c⁄⁄,⁄⁄d], { y }⁄⁄¥ ⁄⁄⁄⁄[g⁄⁄,⁄⁄d⁄]⁄⁄¥ ⁄⁄[c ⁄⁄,⁄⁄d]  do not meet  G.

Theorem 1.2.3 Suppose R  is an incision for two progressive polarised 3D diagrams  (⁄G,⁄⁄v)  and
(⁄W,⁄⁄w). If the embedded graphs G, W are equal outside R,  if the valuations v, w agree on nodes

outside  R,  and if -v(⁄G ⁄⁄«⁄R)  =  -w(⁄W⁄⁄«⁄R),  then -v(G)  =  -w(W)⁄⁄.

Proof Using a small deformation, it is possible to ensure that the planes containing the
horizontal sides of  R  contain no inner nodes of  G,  and therefore none of those of  W either.
Then there are arrows  f⁄⁄, g  such that  v( ⁄G) = f ∞ v(⁄G ⁄⁄«⁄⁄[c⁄⁄,⁄⁄d]) ∞ g  and  w( ⁄W) = f ∞ v(⁄W ⁄⁄«⁄⁄[c⁄⁄,⁄⁄d]) ∞

Page  6



g.  So the problem reduces to the case where  ⁄[c⁄⁄,⁄⁄d] = ⁄[a⁄⁄,⁄⁄b].   Using a small deformation, we can
arrange that the tangents to the edges which meet the horizontal planes  z = a,  z = b  have
vertical tangents at the points of intersection.  Now raise the rectangle  R  above the layer
R ⁄⁄2⁄⁄⁄¥ ⁄⁄⁄⁄⁄[a⁄⁄,⁄⁄b]  so that it appears as a chimney. Extend the edges of the domain of the part of the
diagram in  R  as straight lines below the chimney.  Extend the edges of the codomain of the
part of the diagram outside  R  as straight lines above the layer.  

This reduces the problem to the case where the two graphs  G, W consist, outside the rectangle
R,  of the same collection of straight line edges. For this case the result follows directly from the
definition of value. qed
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CHAPTER 2: Autonomous Monoidal Categories

Section 2.1   Coherence for autonomous monoidal categories

Let  V denote a monoidal category with tensor product functor  ƒ : V ¥ V aAV and
unit object  I.   We avail ourselves of a coherence theorem [JS1; Corollary 1.4] to write as if the
tensor product were strictly associative and the unit were a strict unit. We now recall some
definitions from  [JS1; Section 7]. 

We write  V⁄⁄(A⁄⁄,⁄⁄B)  for the set of arrows in  V from  A  to  B.  An arrow  e : A ƒ B aAI
is called a pairing of A, B.  The pairing is exact when the function

e# :  V⁄(X⁄⁄,⁄⁄B ƒ Y) aAV⁄(A ƒ X⁄⁄ ,⁄⁄Y)
is invertible where, for all arrows  f : X⁄⁄aA⁄B ƒ Y,  the arrow  e#(⁄f⁄) :  A ƒ X⁄⁄aAY  is the
composite

  A ƒ X
1A ƒ f

æ Æææ A ƒ B ƒ Y
e ƒ 1Yæ Æææ Y .

In this case, there is a unique arrow  h : I ⁄⁄aA⁄B ƒ A  defined by the equation  e# (h) = 1A .  Then
the following two adjunction triangles commute.

A A ƒ B ƒ A

A 

1 ƒ h 

e ƒ 1 
A 

1

A 

A 

B B ƒ A ƒ B

B 

1 ƒ e 

h ƒ 1 

B 
1

B 

B 

Indeed, a pairing  e : A ƒ B aAI  is exact if and only if there exists an arrow  h : I ⁄⁄aA⁄B ƒ A
such that the two adjunction triangles commute.  Symmetrically then we have a bijection

h# :  V⁄(Y ƒ B⁄⁄ ,⁄⁄X) aAV⁄(Y⁄⁄,⁄⁄X ƒ A).
In particular, the homsets of the form  V⁄(B⁄⁄,⁄⁄X)  are determined up to isomorphism by those of
the form  V⁄(I⁄⁄,⁄⁄X ƒ A).

A pair  (h ⁄⁄,⁄⁄e)  is said to be an adjunction between the objects  A  and  B  when they satisfy
the two adjunction triangles.  When such a pair exists we say that  A  is left adjoint or left dual to
B;  we write

(h ⁄⁄,⁄⁄e) : A J B .
We also say  B  is right dual to  A.  We call  h the unit and  e the counit of the adjunction.

A monoidal category  V is called left (right) autonomous when every object has a left
(right) dual.  It is autonomous when it is both left and right autonomous.  When  V is left
autonomous, a choice of adjunction 

(hA
⁄,⁄⁄eA) : A*J A

for each object  A  determines a fully faithful functor
(  )* :  V⁄opaAV

given on arrows  f : A aAB  by taking  f⁄⁄* : B* aAA* to be the value of  eB
# at the composite

  I
h

Aæ Ææ A ƒ A*
f ƒ 1

A*
æ Ææ ææ B ƒ A*.

The functor  (  )* is an equivalence of categories if and only if  V is autonomous.
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Example 2.1.1 Let  H  be a Hopf algebra over a commutative ring  k.  The category  Prk(H)  of

(left) H-modules, which are finitely generated projective as k-modules, is autonomous
monoidal in such a way that the forgetful functor  Prk(H) aAModk into the category of k-

modules is monoidal.  The left H-action on  M* =  Homk (M⁄⁄,⁄⁄k⁄)  is given by
(x ∑ f)(m)  =  f⁄(n(x) ∑ m)

for all  xŒH,  fŒ M* and  mŒM. //

Recall the definition of monoidal functor F : V aAW between monoidal categories  V,
W.  These are the “tensor functors” of [JS1,2] and the “strong monoidal functors” of [EK].  Such
a monoidal functor  F  consists of a functor  F : V aAW together with an isomorphism  f0 : I
aAF ⁄⁄I  and a family of natural isomorphisms  f2, A,B : FA ƒ FB aAF(A ƒ B)  satisfying three
coherence conditions.  The monoidal functor is called strict when  f0 and each  f2, A,B is an
identity.   

Monoidal functors  F : VaAW preserve duals.  More precisely, if  e : A ƒ B aAI  is an
exact pairing from  A  to  B  then the pairing from  FA  to  FB  given by the composite

  FA ƒ FB
f2,A,Bæ Ææ æ F(A ƒ B)

F e
æ Ææ F I

f0
-1

æ Æææ I

is exact.
Suppose  F, G : V aAW are monoidal functors.  A natural transformation  q : F aAG

is called monoidal when the following diagrams commute.

FA ƒ FB F(A ƒ B) 

GA ƒ GB G(A ƒ B) 

q   ƒ q q

f

f

A B A ƒ B

2, A, B

2, A, B

I F I

G I

q I

f

f
0, I

0, I

If a monoidal functor  F : V aAW is an equivalence then it is a monoidal equivalence in the
sense that there exists a monoidal functor  H : W aAV and invertible monoidal natural
transformations  H F  aA1V and  F H  aA1W . 

We regard the opposite  V ⁄⁄⁄op of a monoidal category  V as monoidal with tensor

product  A ƒ B  in  V⁄⁄⁄op given by  B ƒ A  in  V.  If  V is left autonomous then the functor  (  )* :

V⁄⁄⁄op aAV is monoidal: there are canonical isomorphisms
(A ƒ B)* @ B* ƒ A* ,    I*  @ I . 

When  V is autonomous it follows that  (  )* :  V⁄⁄⁄op aAV is a monoidal equivalence.   

In a left autonomous monoidal category  V,  the families of arrows  eA : A* ƒ A aAI ,
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hA :  I aAA ƒ A*,  for  AŒ V,  are monoidal dinatural transformations. For  e this means that
the following three diagrams commute (and for  h there are three symmetrically obtained
diagrams).  The unnamed isomorphisms are the canonical ones.

 B   ƒ B

I

*

*

 e 

  f   ƒ 1 

 B

B  ƒ A

A  ƒ A *

*

 e  

 1 ƒ f  

 A

 e 
 I

I  ƒ I * Ik

(A  ƒ B)   ƒ (A ƒ B)*
 e   A ƒ B

I

 B   ƒ B*(B   ƒ (A   ƒ A)) ƒ B* *
k

 (B  ƒ I) ƒ B* k

(1 ƒ e  ) ƒ 1
 A

 e 
 B

Definition 2.1.2 An autonomous monoidal category  V is called strict when  V is a strict
monoidal category and the monoidal functor  ( )* : V ⁄⁄⁄op aAV is a strict monoidal
isomorphism.

Proposition 2.1.3 Each autonomous monoidal category is monoidally equivalent to a strict one.

Proof For any strict monoidal category  V,  consider the strict autonomous monoidal category
Adj ⁄⁄V defined as follows.  An object  A = (An , e⁄An )nŒZ consists of an object  An of  V for each

integer  nŒZ and an exact pairing  e⁄An : An+1 ƒ An
aAI  (and we write  h⁄An for the

corresponding unit).  An arrow  f = ( f ⁄⁄n )nŒZ : A aAB  consists of arrows  f⁄⁄n : An
aABn in  V

for  n  even and  f⁄⁄n : Bn
aAAn in  V for  n  odd such that the following diagrams commute.

B      ƒ A n+1 n

A      ƒ A 
n+1 n

I

e

B      ƒ Bn+1 n

n   even

A 
n

e B 
n

f     ƒ 1 
n+1

1 ƒ f n

A      ƒ B n+1 n

A      ƒ A 
n+1 n

I

e

B      ƒ Bn+1 n

n   odd

A 
n

e B 
n

f     ƒ 1 
n+1

1 ƒ f n

The tensor product for  Adj⁄⁄V is given by

  
(A ƒ B)n =

An ƒ Bn for n even
Bn ƒ An for n odd

Ï
Ì
Ó
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with  (e⁄A ƒ B⁄)n equal to the composite

  Bn+1 ƒ An+1 ƒ An ƒ Bn

1 ƒ e n
A ƒ 1

æ Ææ æ ææ Bn+1 ƒ Bn

e n
B

æ Æææ I

for  n  even and equal to the composite

  An+1 ƒ Bn+1 ƒ Bn ƒ An

1 ƒ e n
B ƒ 1

æ Ææ æ ææ An+1 ƒ An

e n
A

æ Æææ I

for  n  odd.  There is a left dual of  AŒAdj⁄⁄V given by  A* = (An+1 , e ⁄An+1 )nŒZ with exact

pairing  e⁄A : A* ƒ A  aA I  having n-th component equal to  e⁄An : An+1 ƒ An
aAI  for  n  even

and  h ⁄An : I aAAn ƒ An+1 for  n  odd.  Clearly  Adj⁄⁄V is strict autonomous. There is a fully
faithful strict-monoidal functor  E : Adj ⁄⁄VaAV given by  EA = A0

⁄⁄,  E⁄⁄f = f0 .  Clearly  E  is an
equivalence if and only if  V is autonomous.qed

In a strict autonomous monoidal category  V,  we write  D  for the isomorphism of
categories  ( )* : V⁄⁄⁄opaAV and  D⁄⁄–1 for its inverse as a functor  V⁄⁄⁄op aAV.  We write  D⁄⁄n for
the n-fold composite of  D  with itself for  n ≥ 0  and of   D ⁄⁄–1 with itself for  n < 0.  For  n  even,
we have the monoidal isomorphism  D⁄⁄n :  V aAV and, for  n  odd, we have the monoidal

isomorphism  D ⁄⁄n :  V⁄⁄⁄opaAV.      
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CHAPTER 3: Pivotal Categories

Section 3.1   Coherence for pivotal categories

Definition 3.1.1 A pivotal category V consists of a left autonomous monoidal category  V
with a monoidal natural isomorphism

i ⁄A :  A  akaAA*⁄⁄*

such that the following diagram commutes.

A*⁄⁄ *⁄⁄*⁄*A

*⁄⁄A

i

i

* ⁄⁄A

*⁄⁄
A1 * ⁄⁄A

The condition that  iA be monoidal means that  i⁄⁄I is the canonical isomorphism   I  @  I*⁄⁄ * and

i ⁄AƒB is the composite of  i⁄A⁄⁄ƒ ⁄⁄ i ⁄B with the canonical isomorphism  A*⁄⁄* ƒ B*⁄⁄* @ (A ƒ B)*⁄⁄* .

Every object of  V is isomorphic to a left dual (namely,  A*⁄⁄*⁄⁄),  so  ( )* : V⁄⁄⁄op aAV is an
equivalence of categories. It follows that every pivotal category is autonomous.

Example 3.1.2 Let  H  be a Hopf algebra over a commutative ring  k.   We write  d : H
aAH⁄⁄ƒ⁄⁄H  for the comultiplication,  e : H aAk for the counit,  and  n : H aAH  for the
antipode.  Recall that an element  uŒH  is called group-like when  

d(u)  =  u ƒ u .
The group-like elements  u  satisfy the condition  e ⁄⁄(u) = 1  and form a group under multiplic-
ation in  H  with inverse given by  u ⁄–1 = n ⁄(u).  (They are linearly independent when  k is a
field.)  Suppose we have a group-like element  uŒH  satisfying

n⁄⁄2⁄⁄(x) u = u x     for all  xŒH.
Then the autonomous monoidal category  Prk(H)  (Example 2.1.1) becomes pivotal on defining

i ⁄M :  M  aAM*⁄⁄* by   i⁄M⁄⁄(m)(f) = f⁄(u ⁄⁄m)  for all  mŒM  and  fŒM*.  //

Definition 3.1.3 A pivotal category is called strict when it is a strict autonomous monoidal
category and each  i ⁄A is an identity.

Proposition 3.1.4 Each pivotal category is monoidally equivalent to a strict one.

Proof The proof is a “mod 2” version of the proof of Proposition 2.1.3.  For any strict
monoidal category, we define a pivotal category  PAdj ⁄⁄V as follows.  An object is a quadruplet
A = (A0

⁄⁄,⁄⁄A1
⁄⁄,⁄e⁄A0

⁄⁄,⁄⁄e⁄A1)  where  ⁄e⁄A0 : A0
⁄⁄ƒ ⁄⁄A1

aAI ,  e⁄A1 : A1
⁄⁄ƒ⁄⁄A0

aAI  are exact pairings.  An
arrow  f = (f ⁄0⁄⁄,⁄⁄f1

⁄) : A aAB  consists of arrows  f⁄⁄0 :  A0
⁄⁄aA⁄B0 , f⁄⁄1 :  B1

⁄⁄aA⁄A1 such that the two
conditions hold as for arrows in  Adj⁄⁄V taken for  n  modulo 2.  The monoidal structure is given
as for  Adj⁄⁄V taken for  n  modulo 2.  Clearly  PAdj⁄⁄V is a strict pivotal category. There is a fully

Page  12



faithful strict-monoidal functor  E : PAdj⁄⁄V aAV given by  EA = A0
⁄⁄,  E⁄⁄f = f ⁄0 .  It is routinely

verified that  E  is an equivalence if and only if  V is pivotal.qed

In a pivotal category  V there is a certain amount of cyclic symmetry which we now
explain.  For objects  A, BŒV,   there is a bijection

t⁄A⁄, ⁄B :   V⁄(⁄⁄I⁄⁄,⁄⁄A ƒ B)  akA V⁄(⁄⁄I⁄⁄,⁄⁄B ƒ A)
taking the arrow  f : I aAA ƒ B  to the composite

  I
hBæ Ææ B ƒ B* 1 ƒ f ƒ 1

æ Ææ ææ B ƒ A ƒ B ƒ B*
1 ƒ 1 ƒ e

B*

æ Ææ æ ææ B ƒ A .

Diagrammatically, if we draw  f  as

f ∑

A B

(with the significance of the marker on the node to be explained later) then  t⁄A⁄,⁄B ⁄⁄(⁄⁄f⁄⁄)  is the
value of the following plane diagram in which the string labelled  B  has been “dragged around
under the node”.

f ∑

AB

B B*

This raises the question as to whether dragging the string labelled  A  around under the node,
as in the diagram

f ∑

AB

AA*

,

would lead to the same value which we could then depict by
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f
∑

AB

which differs from the picture for  f  in that the labels on the strings are switched and the
marker is cranked around through a quarter turn.  This possible alternative to  t⁄A⁄,⁄B(⁄⁄f⁄⁄)  is the
composite

  I
h

A*

æ Æææ A* ƒ A
1 ƒ f ƒ 1

æ Ææ ææ A* ƒ A ƒ B ƒ A
e A ƒ 1 ƒ 1

æ Ææ æ ææ B ƒ A .

The next Proposition shows that this composite is indeed equal to  t⁄A⁄, ⁄B(⁄⁄f⁄⁄).  

Proposition 3.1.5 In any pivotal category, the following diagram commutes for all arrows
f : IaAA ƒ B⁄⁄.

I

B ƒ B B ƒ A ƒ B ƒ B

B ƒ A

**
h

 1 ƒ 1 ƒ e 

 1 ƒ f  ƒ 1 

 B* B

A  ƒ A A  ƒ A ƒ B ƒ A**
h  e   ƒ 1 ƒ 1

 1 ƒ f  ƒ 1 
 A* A

Proof Put  g = e⁄A# (⁄⁄f⁄⁄) : A* aAB  which is the composite

  A
* 1A ƒ f

æ Æææ A* ƒ A ƒ B
e A ƒ 1Bæ Ææ ææ B

so that  f  is the composite

  I
h

Aæ Ææ A ƒ A* 1 ƒ g
æ Æææ A ƒ B .

Now  g* : B* aAA  is defined to be the composite

  B
* h

A ƒ 1
æ Æææ A ƒ A* ƒ B* 1 ƒ gƒ 1

æ Ææ ææ A ƒ B ƒ B*
1 ƒ e

B*

æ Ææ ææ A

which, from our formula for  f  in terms of  g,  is equal to the composite

  B
* f ƒ 1

æ Æææ A ƒ B ƒ B*
1 ƒ e

B*

æ Ææ ææ A .

Therefore the three inner regions of the following diagram commute.
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I

B ƒ B B ƒ A ƒ B ƒ B

B ƒ A

**
h

 1 ƒ 1 ƒ e 

 1 ƒ f  ƒ 1 

 B* B

A  ƒ A A  ƒ A ƒ B ƒ A**
h  e   ƒ 1 ƒ 1

 1 ƒ f  ƒ 1 
 A* A

1 ƒ g 

g ƒ 1

*

qed

To explain why this leads to “cyclic” symmetry and to express the coherence of the
bijections  t⁄A⁄, ⁄B we need some formalism. Suppose we are given a set  S and “conjugation
symbols”  t⁄u ⁄,⁄v : u v aAv u  for all words  u, v  in the alphabet  S .  Let  Conj(S)  denote the
category whose objects are words in the alphabet  S and whose arrows are generated by the
conjugation symbols subject to the following relations.

u v v u

u v

1

t

t

u⁄⁄, v

v, u

u v w v w u

w u v

t

t

u⁄⁄, v w

v, w ut
u v, w

It follows that  t⁄u ⁄,⁄v is an identity arrow when either  u  or  v  is the empty word.

Proposition 3.1.6 In the category Conj(S),  there is a unique arrow between any two conjugate
words with distinct letters.

Proof Let  S = { 1, 2, . . . , n },  and,  for  kŒS ,  let 
·⁄⁄k ⁄⁄Ò =  k  k+1  k+2  .  .  .  n–1  n  1  2  3  .  .  .  k–1 

be the cyclic permutation of  1, 2, . . . , n  starting with  k.  It suffices to show that, for all  kŒS ,
the unique arrow in this  Conj(S)  from  ·⁄⁄1⁄⁄Ò to  ·⁄⁄k ⁄⁄Ò is  t⁄u⁄, ⁄v where  u  =  1  2  3  .  .  .  k–1  and  v
=  k  k+1  k+2  .  .  .  n–1  n.  This is done by induction on the minimum length of the path of
conjugation symbols representing the arrow.  Any other arrow  ·⁄⁄1⁄⁄Ò aA·⁄⁄k ⁄⁄Ò must factor
through some  t : ·⁄⁄1⁄⁄Ò aA·⁄⁄h⁄⁄Ò where, by induction, the arrow  ·⁄⁄h⁄⁄Ò aA·⁄⁄k ⁄⁄Ò must also be a
conjugation symbol  t .

·⁄⁄2⁄⁄Ò

·⁄⁄3⁄⁄Ò

·⁄⁄k ⁄⁄Ò

·⁄⁄1⁄⁄Ò
• •

•
•

•

t⁄

·⁄⁄h⁄⁄Ò

t⁄

The triangle created is then a defining relation for  Conj(S)  and so commutes.  So the full
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subcategory of  Conj(S)  consisting of the objects  ·⁄⁄k ⁄⁄Ò is equivalent to the terminal category  1
(and so is a clique in the sense of  [JS2; p.58]). qed

Suppose  V is a strict pivotal category.  Let  S be the set of objects of  V.  We shall
define a functor  T : Conj(S) aASet  into the category of sets.  For each object  A  of  V,  put 

TA  =  V⁄⁄(⁄⁄I⁄⁄,⁄⁄A)
which defines  T  on words of length  1.  For an arbitrary word  u = A1 A2 . . . Am of objects of
V,  we define  Tu = T ⁄(ƒ⁄⁄u)  where  ƒ ⁄⁄u = A1

⁄⁄ƒ A2
⁄⁄ƒ . . . ƒ⁄⁄AmŒV.  For each generating arrow

t⁄u ⁄,⁄v : u v aAv u  of  Conj ⁄(S),  we define  
T t⁄u⁄, ⁄v =  t⁄A⁄,⁄B :  V⁄⁄(⁄⁄I⁄⁄,⁄ A⁄⁄ƒ B)  akA V(⁄⁄I⁄⁄,⁄⁄B⁄⁄ƒ A) 

where  A = ƒ⁄⁄u  and  B = ƒ ⁄⁄v . That  T  respects the two defining relations for  Conj⁄(S)  is proved
by the following two diagrammatic identities (the first of which uses the two descriptions of  t
available from Proposition 3.1.5; the second uses the monoidalness of  e, h ).

f
=

f

=
f

C A B

f

C A ƒ B

References

[BW] John W. Barrett and Bruce W. Westbury, Spherical categories (preprint, University of 
Nottingham, August 1993)

[B]    J. Bénabou, Introduction to bicategories, Reports of the Midwest Category Seminar, Lecture 
Notes in Math. 47 (Springer-Verlag, Berlin 1967) 1-77.

Page  16



[CS]  J.S. Carter and M. Saito, Syzygies among elementary string interactions in dimension 
2 + 1, Letters in Math Physics 23 (1991) 287-300.

[C]   J. Cerf, La stratification naturelle des espaces de fets differéntiables rielles et le theorie de 
la pseudo-isotopie, Publ. Math  IHES 39 (1970) 5-173.

[EK] S. Eilenberg and G.M. Kelly, Closed categories, in Proceedings Conference on Categorical 
Algebra at La Jolla, 1965 (Springer-Verlag, 1966) 421-562.

[F]     J. E. Fischer  Jr, 2-Categories and 2-knots, Duke Math Journal 75 (1994) 493-526.

[FY1] P. Freyd and D. Yetter, Braided compact closed categories with applications to low 
dimensional topology, Advances in Math. 77 (1989) 156-182.

[FY2] P. Freyd and D. Yetter, Coherence theorems via knot theory, J. Pure Appl. Algebra 78 
(1992) 49-76.

[GPS] R. Gordon, A.J. Power, and R. Street, Coherence for tricategories, Memoirs of the 
American Math Society (to appear).

[JS0] A. Joyal and R. Street, Planar diagrams for monoidal categories (preprint 1988)

[⁄⁄JS1⁄] A. Joyal and R. Street, Braided tensor categories,  Advances in Math. 102 (1993) 20-78.

[⁄⁄JS2⁄] A. Joyal and R. Street, The geometry of tensor calculus I,  Advances in Math. 88 (1991) 
55-113.

[⁄JS3⁄] A. Joyal and R. Street, Tortile Yang-Baxter operators in tensor categories, J. Pure Appl. 
Algebra 71 (1991) 43-51.

[JS4] A. Joyal and R. Street, An introduction to Tannaka duality and quantum groups; in 
Category Theory, Proceedings, Como 1990; Part II of Lecture Notes in Math. 1488 
(Springer-Verlag, Berlin 1991) 411-492.

[JSV] A. Joyal, R. Street and D. Verity, Traced monoidal categories, Macquarie Math Reports
94/156 (August 1994); Math. Proc. Camb. Phil. Soc. (to appear).

[KV1] M.M. Kapranov and V.A. Voevodsky, 2-categories and Zamolodchikov tetrahedra 
equations, Proceedings of Symposia in Pure Math⁄⁄ 56 Part 2 (1994) 177-259.

[KV2] M.M. Kapranov and V.A. Voevodsky, Braided monoidal 2-categories and 
Manin–Schechtman higher braid groups, J. Pure Applied Algebra 92 (1994) 241-267. 

[K]   Christian Kassel,  Quantum Groups, Graduate Texts in Math 155  (Springer-Verlag, 1995).

[KS] G.M. Kelly and R.H. Street, Review of the elements of 2-categories, Category Seminar 
Sydney 1972/73, Lecture Notes in Math. 420 (Springer-Verlag, Berlin 1974) 75-103.

Page  17



[ML] S. Mac Lane, Categories for the Working Mathematician, Graduate Texts in Math. 5 
(Springer-Verlag, Berlin 1971).

[Sm] Shum Mei Chee, Tortile Tensor Categories (PhD thesis, Macquarie University, 
November 1989); J. Pure Appl. Algebra 93 (1994) 57-110.

[St0] R. Street, The algebra of oriented simplexes, J. Pure Appl. Algebra 49 (1987) 283-335.

[St1] R. Street, Categorical structures, Handbook of Algebra Vol 1 (Elsevier, North Holland, to 
appear).

[St2]   R.  Street, Higher categories, strings, cubes and simplex equations, Applied Categorical 
Structures 3 (1995) 29-77.

Page  18


