Powerful functors

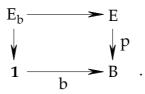
Ross Street

23 September 2001

This is a slightly extended version of my handwritten note [S] which makes no claim to originality. The main result was obtained by Giraud [G] and later by Conduché [C]. The problem addressed is that of characterizing the *powerful* (or "exponentiable") morphisms in the category **Cat** of (small) categories: that is, those functors $p: E \longrightarrow B$ for which the functor $p^* : Cat/B \longrightarrow Cat/E$, given by pulling back along p, has a right adjoint. The reason for the name is that p is powerful if and only if raising to the power p exists in the full slice category **Cat**/B (that is, the cartesian internal hom $(A,u)^{(E,p)}$ exists for all objects (A,u) of **Cat**/B).

We write **Mod** for the bicategory whose objects are (small) categories and for which the hom category **Mod**(A, B) is the functor category $[B^{op} \times A, Set]$. The morphisms of **Mod** are called *modules* while the 2-cells are called *module morphisms*. Composition of modules is given by the usual coend formula. We identify **Cat** as a sub-2-category of the bicategory **Mod** by thinking of a functor $f : A \longrightarrow B$ as the module defined by taking f(b, a) to be B(b, f(a)).

For any functor $\,p:E\longrightarrow B$, the *fibre* over an object $\,b\,$ of $\,B\,$ is the subcategory $\,E_b\,$ of $\,E\,$ given by the pullback



Each $\beta : b \longrightarrow b'$ determines a module $m_E(\beta) : E_{b'} \longrightarrow E_b$ defined by $m_E(\beta)(e,e') = \{ \xi : e \rightarrow e' \mid p(\xi) = \beta \}$

for objects e of E_b and e' of $E_{b'}$. Notice immediately that $m_E(1_b)$ is the identity module of E_b (that is, the hom-functor $E_b(-,-): E_b^{op} \times E_b \longrightarrow \mathbf{Set}$), and yet, for each composable pair of morphisms $\beta: b \longrightarrow b'$ and $\beta': b' \longrightarrow b''$ in B, we only have a module morphism $\mu_{\beta,\beta'}: m_E(\beta) \otimes m_E(\beta') \longrightarrow m_E(\beta'\beta),$

which is induced by the composition functions $E(e', e'') \times E(e, e') \longrightarrow E(e, e'')$. In fact, we have defined a normal lax functor¹

$$m_E: B^{op} \longrightarrow Mod$$

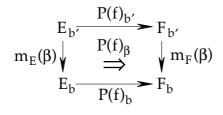
Write **Cat**/B for the usual slice category of objects $p: E \longrightarrow B$ of **Cat** over B in which the morphisms $f: (E, p) \longrightarrow (F, q)$ are commutative triangles over B; however, we enrich **Cat**/B to become a 2-category by accepting those 2-cells $\theta: f \Rightarrow g: (E, p) \longrightarrow (F, q)$ satisfying $q \theta = p$. Write Bicat(B^{op}, **Mod**) for the bicategory of lax functors B^{op} \longrightarrow **Mod**, lax

¹ Lax functors are Bénabou's "morphisms of bicategories" while here "normal" means strictly identity preserving.

transformations, and modifications.

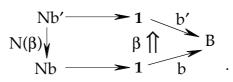
Proposition (Bénabou [B]) The slice 2-category **Cat**/B is equivalent to the sub-2-category of the bicategory Bicat(B^{op}, **Mod**) whose objects are the normal lax functors, whose morphisms are the lax transformations with components at objects b of B being actual functors, and whose 2-cells are all the modifications.

Proof (sketch) The value at the object (E, p) of a 2-functor $P: Cat/B \longrightarrow Bicat(B^{op}, Mod)$ is defined to be the normal lax functor m_E . For a morphism $f: (E, p) \longrightarrow (F, q)$ over B we define a lax transformation $P(f): m_E \Rightarrow m_F$ by defining the component $P(f)_b: E_b \longrightarrow F_b$ to be the functor induced by f (meaning that $P(f)_b(e) = f(e)$), and by defining the component



at $\beta : b \longrightarrow b'$ to be the function $F_b(x, f(e)) \times m_E(\beta)(e, e') \longrightarrow m_F(\beta)(x, f(e'))$ taking the equivalence class of the pair $(\chi, \xi) \in F_b(x, f(e)) \times m_E(\beta)(e, e')$ to $f(\xi) \chi \in m_F(\beta)(x, f(e'))$. It is easy to see that a 2-cell $\theta : f \Rightarrow g : (E, p) \longrightarrow (F, q)$ induces a modification $P(\theta) : P(f) \Rightarrow P(g)$ in an obvious way and that what we have is a 2-functor P landing in the specified sub-2-category of Bicat(B^{op} , **Mod**). Every lax transformation $\lambda : m_E \longrightarrow m_F$ having each λ_b a functor is of the form P(f) for a unique $f : (E, p) \longrightarrow (F, q)$. Similarly, each modification $P(f) \Rightarrow P(g)$ is of the form P(θ) for a unique θ .

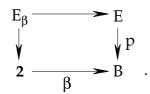
The inverse equivalence for P is a generalization of the so-called "Grothendieck construction" of a fibration from a category-valued pseudo-functor (which itself is a generalization of the classical category of elements of a presheaf). Given a normal lax functor $N: B^{op} \longrightarrow Mod$, we obtain a category E = coll N as the lax colimit (or *collage*) of N and a functor $p: E \longrightarrow B$ induced by the lax cocone



Explicitly, the objects of E are pairs (b, x) where b is an object of B and x is an object of Nb; a morphism $(\beta, \chi) : (b, x) \longrightarrow (b', x')$ consists of a morphism $\beta : b \longrightarrow b'$ in B and an element $\chi \in N(\beta)(x, x')$; and composition uses composition in B and the composition constraints for N. Of course, p(b, x) = b and $p(\beta, \chi) = \beta$. Clearly there is a canonical

isomorphism $P(E, p) \cong N$ of lax functors. **g.e.d**.

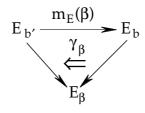
For any functor $\,p:E\longrightarrow B\,$ and any morphism $\,\,\beta:b\longrightarrow b'\,$ in $\,B$, we can also form the pullback



Notice that E_{β} contains E_{b} and $E_{b'}$ as disjoint full subcategories, and $E_{\beta}(e,e') = m_{E}(\beta)(e,e')$ and $E_{\beta}(e',e) = \emptyset$ for $e \in E_{b}$ and $e' \in E_{b'}$. This means that

$$\mathbf{E}_{\mathbf{b}} \longleftrightarrow \mathbf{E}_{\mathbf{\beta}} \longleftrightarrow \mathbf{E}_{\mathbf{b}'}$$

is a codiscrete cofibration from $E_{b'}$ to E_b and we have the collage (or lax colimit)



in Mod.

Now we come to our main business: that of investigating what it means for the functor $p^*: Cat/B \longrightarrow Cat/E$ given by pulling back along p, to have a right adjoint. Since the domain functor Cat/E

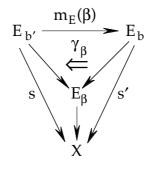
 \rightarrow **Cat** is comonadic (in fact the counit with the right adjoint is a split monomorphism), the functor **p**^{*} has a right adjoint if and only if the functor

$$- \underset{\mathbf{P}}{\times} \mathbf{E} : \mathbf{Cat} / \mathbf{B} \longrightarrow \mathbf{Cat}$$

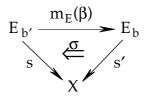
has a right adjoint [D]. Such an adjoint is determined by its value $h : Z \longrightarrow B$ on each object $X \in Cat$; such an h is called a right lifting of X through $- \underset{B}{\times} E$ and participates in a bijection

$$(Cat/B)((A, u), (Z, h)) \cong Cat(A \times E, X)$$

which is natural in (A, u). As is so often the case with right adjoints, this allows us to discover what the category Z must be. Take A = 1 and $u = b : 1 \longrightarrow B$ to find that an object of Z over b amounts to a functor $s : E_b \longrightarrow X$. So the <u>objects</u> of Z are pairs (b, s) where $b \in B$ and s is such a functor. Now take A = 2 and $u = \beta : 2 \longrightarrow B$ to find that a morphism of Z over β amounts to a functor $E_\beta \longrightarrow X$.

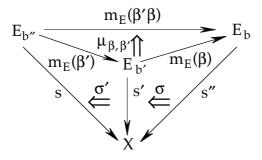


By the collage property, this is the same as a diagram



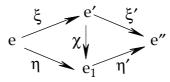
in **Mod**. So a <u>morphism</u> $(\beta, \sigma) : (b, s) \longrightarrow (b', s')$ in Z amounts to a morphism $\beta : b \longrightarrow b'$ in B together with a σ as in the above triangle.

The problem comes when we try to define <u>composition</u> in Z. The appropriate diagram



is <u>not well formed for pasting</u>. However, if each $\mu_{\beta,\beta'}$ is invertible then Z becomes a category and $h: Z \longrightarrow B$, where h(b, s) = b and $h(\beta, \sigma) = \beta$, is a right lifting of X through the functor $-\underset{B}{\times} E$.

To say each $\mu_{\beta,\beta'}$ is invertible is to say $m_E : B^{op} \longrightarrow Mod$ is a pseudofunctor (or "homomorphism" in Bénabou's terminology). Yet what does it mean combinatorially for each $\mu_{\beta,\beta'}$ to be invertible? Take a composable pair of morphisms $\beta : b \longrightarrow b'$ and $\beta' : b' \longrightarrow b''$ in B and take $e \in E_b$ and $e'' \in E_{b''}$. Consider the category $M_E(\beta,\beta')(e,e'')$ whose objects are composable pairs of morphisms $\xi : e \longrightarrow e'$ and $\xi' : e' \longrightarrow e''$ in E such that $p\xi = \beta$ and $p\xi' = \beta'$, and whose morphisms are commutative diagrams



in which $\chi : e' \longrightarrow e_1$ is in the fibre $E_{b'}$ over b'. Then $(m_E(\beta') \otimes m_E(\beta))(e,e'')$ is the set of path components of the category $M_E(\beta,\beta')(e,e'')$, and, $\mu_{\beta,\beta'}$ has component at (e, e'') induced by

 $M_E(\beta,\beta')(e,e'') \longrightarrow m_E(\beta'\beta)(e,e''), \quad (\xi\,,\,\xi')\longmapsto \xi'\,\xi\,.$

With these preliminaries, the following precise statement is easily verified.

Theorem (Giraud [G], Conduché [C]) For a functor $p: E \longrightarrow B$, the following conditions are equivalent:

(i) the functor $p^*: Cat/B \longrightarrow Cat/E$ has a right adjoint;

(ii) the normal lax functor $m_E: B^{op} \longrightarrow Mod$ is a pseudofunctor;

(iii) for all $\beta : pe \longrightarrow b'$ and $\beta' : b' \longrightarrow pe''$ in B, and $\zeta : e \longrightarrow e''$ in E over $\beta\beta'$, there exist $\xi : e \longrightarrow e'$ and $\xi' : e' \longrightarrow e''$ over β and β' , respectively, with composite ζ , and any two such pairs (ξ, ξ') are connected by a path in the category $M_E(\beta,\beta')(e,e'')$.

References

- [B] J. Bénabou, Lectures at Oberwolfach (Germany) and other places, 1972 1995.
- [BN] M. Bunge and S.B. Niefield, Exponentiability and single universes, J. Pure Appl. Algebra 148 #3 (2000) 217-250.
- [C] F. Conduché, Au sujet de l'existence d'adjoints à droîte aux foncteurs "image reciproque" dans la catégorie des catégories, C.R. Acad. Sci. Paris 275 (1972) A891-894.
- [D] E. Dubuc, Adjoint triangles, *Lecture Notes in Math.* **61** (Springer-Verlag, Berlin, 1968) 69-91.
- [G] J. Giraud, Méthode de la descente, Bull. Math. Soc. Memoire 2 (1964).
- [J] P.T. Johnstone, A note on discrete Conduché fibrations, *Theory and Application of categories* 5 (1999) 1-11.
- [S] R.H. Street, Conduché functors (handwritten manuscript, 15 October 1986).

Centre of Australian Category Theory Macquarie University New South Wales 2109 AUSTRALIA email: street@math.mq.edu.au