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- An m-simplex x in an n-category A consists of the assignment of an r-cell x(«) to each
(r + 1)-element subset u of {0, 1, ..., m)} such that the source and target (r — 1)-cells of x(x)
are appropriate composites. of x(v) for v a proper subset of u. As m increases, the appropriate
composites quickly become hard to write down. This paper constructs an m-category 0, such
that an m-functor x: 0, ~> A is precisely an m-simplex in A. This leads to a simplicial set AA;
called the nerve of A, and provides the basis for cohomology with coefficients in A. Higher
order equivalences in A as well as free n-categories are carefully defined. Each 0, is free.
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Introduction
History

The nerve of a category A is the simplici‘al set AA whose elements of dimension
n are abutting n-tuples of arrows in A [10]. That this process generalizes to
r-categories A, where now an element of dimension n is an n- -simplex with an
m-cell in each face of dlmcnsron m, 1 learned 'in conversation with John E
Roberts in 1979. ,

. This informal description of A turns out to be harder to make precise than one
would expect and it is the pr1nc1pal purpose of the present paper to give a srmple
accurate definition. The central idea (which I had a few months after the
conversation with Roberts) is to describe ‘‘the free w- category 0, on the
w-simplex”.

* The author is grateful to Linda Harris for her mventrve and professronal typing of the dragrams i
this paper. ‘ '
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Roberts [8] had a precise description of the nerve of a 3-category but remarked
that no amount of staring at the low dimensional cocycle conditions would reveal
the pattern for higher dimensions. However he had worked on a program aimed
at solving this problem by characterizing nerves as simplicial sets with extra
structure (hollowness) plus exactness conditions; he called them complicial sets
but was unable to complete the program.

On hearing that Roberts was coming again to Australia, I began working
seriously on his program (April-May 1982) obtaining an alternative characteriza-
tion of complicial sets and a proof that complicial sets, whose elements of
dimension greater than 2 are all hollow, are the isomorphs of nerves of 2-
categories. In June 1982, Roberts gave me a copy of his old handwritten notes on
complicial sets in which he had the alternative charactenzatlon and many general
constructions [9].

With Jack Duskin at. Macquarie University ‘enthusiastic about the project, I
returned to study @, and circulated a handwritten conjecture in July 1982; the
well-formedness notion of Section 2 below appeared there. The conjecture
seemed hard to verify and I worked instead on enriched categories for 18 months.
This work on enriched categories, sheaves and stacks led me to realize the
importance of describing @, : apart from containing the higher cocycle conditions
and the coherence information for multiple compositions, it seems to be related to
the notion of space itself. ;

Jack Duskin returned to Australia in December 1983 and I returned to the
attempts at my conjecture. In my office I had two posters of diagrams illustrating
0, for n=5 which were made for the Macquarie University Open Day, August
1982. Jack encouraged me to draw O, which took a weekend of working with rules
which T could not make precise. Meanwhile, he worked on extracting higher
dimensional figures from oriented simplexes.

The clue which put me on the track to a solution was that the well-formedness
of a union occurring in a composite depends not only on the well-formedness of
the separate cells at the level of that union but also on the well-formedness of all
the lower dimensional cells which are involved in the sources and targets. I then

- tediously began characterizing the 2-cells, then the 3-cells, then the 4-cells, and
even the 5-cells of 0, before coming up with a general argument which here
appears in the proofs of Lemma 3.4(d) and Lemma 3.9.

The algorithm which gives the cocycle conditions as equations appears here in
the proof of Corollary 3.14 (excision of extremals). I had written this algorithm
down for Jack on 25 January 1984 but I was unable to justify its working. This
depended on the present Lemma 3.13 whose proof eluded me until this month
(August 1984).

Finally, I should say that, although I had been referring to O, as the free
w-category on the w-simplex Aw, I did not see how to make this universal
property precise until last month. I had thought that an n-dimensional version of
the notion of computad [12] {which is appropnate for n = 2) would be much more
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difficult to describe than O, itself. This is not the case: free w-categories can be
characterized universally in a straightforward manner (see Section 4).

Motivation

Algebraic topology develops from the facial relationships between model spaces
for each dimension. The usual choice for dimension 7 is the standard n-simplex

A ={xeR"|0=sx,=x,=---=x,=1}.

If we put [r]={0,1,....,n}, then 4A,,, consists of the order-preserving func-
tions [n]— I where I is the unit interval. The category 4 of ordered sets [n] and
order-preserving functions has some distinguished functions J;:[n]—[n + 1]
where the image of J; contains all elements of [n + 1] except i. These satisfy the
simplicial identities
36,=8,9,_, fori<j.

There is a functor A—Sp into the category of spaces which takes [r] to 4,; the
information on maps captures the facial relationships.. :

Abelian cohomology is obtained using a space X and an abelian group A. Put
X, =Sp(4,, X), the set of maps in Sp from A, to X; the 4, induce functions
X,.;— X,. Let C" denote the 'set of functions X, — A regarded as an abelian
group under value-wise addition. The 4, induce homomorphisms 4,: C*— C"*!
which again satisfy the mmphclal identities and these 1mply that the homomor-
phisms

d=dy— 3, + =+ (-9, : C"—> "
satisfy the condition
99 =0.

‘The kernel of 3: C"— C"*'is the abelian group Z"(X; A) of n-cocycles on X

 with coefficients in A. The image of 3: C""'— C" is the abelian group B"(X: A)

of n-coboundaries on X with coefficients in 4. So B"(X; A)C Z"(X; A) and
H"(X; A)= Z"(X; A)/B"(X; A) is the n-cohomology group of X with coefficients

. in A.

In summary, for abelian cohomology, the geometric input is the collection of
facial relationships in s1mplexes while ‘the algebraic mput is the alternatmg sum
operation in an abelian group.- »

It is a well-known fact that it is not necessary for the group A to be abelian in
order to obtain objects H’(X; A), H'(X; A) as above. This observation has



286 R. Street

useful consequences (see [11] for example). For example, there are applications
with A = GL(n, k), the group of invertible n X n-matrices with entries from k.

This can be generalized even further. The 1-cocycle condition in its alternating
sum form a, — a, + a, =0 rewrites as a, = a, + a,. This eliminates the need for
inverses and so A needs only to be a monoid. Monoids arise as sets of
endomorphisms under composition. The restriction to endomorphisms is unneces-
sary: the natural context for 1-cohomology is to take A to be a category so that
the 1-cocycle condition becomes commutativity of a triangle:

ap

US

The 1-cohomology classes are isomorphism classes of such commutative triangles,
“although the correct object of study seems to be the category of commutative
triangles itself. '

Using this generalization, one can give a cohomological explanation for the
transfer of properties of global algebraic structures (such as vector spaces) to local
ones (such as vector bundles); see [13]. An example of such a category A is
Mat(k) whose objects are natural numbers and whose arrows n—m are m X
n-matrices with entries from k. Cohomology with coefficients in Mat(k) contains
all the information of that with coefficients in GIL(k), and more.

There have been attempts to generalize 2-cohomology to allow A to be a
general group. Guiding examples and applications seem hard to find. How then
does the generalization to category for H ! help for H?? Is it not true that a group
is a special category and so, if we could do H ? for categories, could we not do H 2
for groups? A

The answer is not to use categories as coefficients for H % The importance of
the generalization for H' is that now we view the operation of A as composition
which is defined only between elements whose sources and targets match-up.

When one looks at those examples of abelian 2-cohomology where we have a
concrete interpretation, one sees the presence of two operations. For example, as
well as its composition, the category Mat(k) has a functorial multiplication

Mat(k) x Mat(k)— Mat(k)

which takes (m, n) to m+ n. o :

- This suggests that 2-cohomology concerns two operations suitably related.
Reinforcement for this view is the fact that a group A with a functorial unital
associative operation A X A— A is necessarily abelian and the operation is
necessarily the group operation.
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Just as the first operation does not need to be everywhere defined, neither does
the second. This leads us to the view that 2-cohomology must be generalized to
allow 2-categories as coefficient objects. (Eventually, we will allow bicategories as
coefficient objects; however, the definition of ‘bicategory’ involves the 3-cocycle
condition which comes from the strict version presented here.)

Although the present paper is self-contained, a less formal introduction to
2-categories is given in [6]. A 2-category A consists of 2-cells

and can be identified with 1-cells (or arrows) x:u—v. Identities for honzontal
composition have the form :

and can be identified with O-cells (or objects) u. Honzontal composmon can be
-broken up into the two more basic forms

Iterated composition in a category leads to nothing more complicated than the
fact that a string — — — - --— has a unique composite.
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Iterating the operations in a 2-category is called pasting. For example, a
diagram such as ‘

y

—_—

/ | \
u
N |
$- —F
pastes (in many different ways) to a unique 2-cell
zyx :

u /1\\,

\__/

khgf-
What then is the 2—(;ocycle condition in a 2-category? The alternating sum form
ay—a,+a,—a;=0 ‘
rewrites as
a;+a,=a,+a,
where the a; should be seen as 2-cells. This suggest.s that the correct condition

should be the equality of the two 2-cells obtained from pasting each side of. the
equation

Uos Uos
————— R

u, a u, . Ug u;

‘L ! laz
Up Ugy = Un Us;
¢a3 lao
A u . u
1 T 2 1 T 2

The 0-dimensional form of this condition is the 2-cocycle equation

(s %, as)*;a; = (ab *o Ugy) *1 Gy

where we use *, for horizontal composition and *, for vertical composition. The
most appealing geometric form for ‘the condition is- in 3-dimensions where it
becomes. a commutative: tetrahedron;. see Fig. 1, where the arrow directions
provide orientations for the 1- and 2-dimensional faces of the tetrahedron.



The algebra of oriented simplexes 289

Fig. 1.

It is necessary to be systematic about the choice of orientation in each
dimension (other choices can be accounted for by 2-category duality). Notice that,
for the triangular faces of the tetrahedron, we have chosen the 2-cells to go from
the single arrow to the composable pair. Thus before proceeding to the tetrahed-
ron, we have considered an oriented triangle, not just a commutative one as for
the 1-cocycle condition. Similarly, before proceeding to the 4-simplex, we must
decide on an orientation of the tetrahedron itself, not just its faces. If we write
Uipss Uoz3s Ugiss o in the tetrahedron in place of a,, a,, a,, a, (using what is
present rather than what is missing), we can view the commutative tetrahedron as
a 2-functor from the 2-category generated by the two diagrams in Fig. 2 into A
which identifies the two 2-cells obtained by pasting. The general principle for the

direction of an m-cell labelled (x,, x;, . . ., x,,) is that the (m — 1)-cells involved
in the source of (xg, x;,. .., x,,) are the (Xg, X;, . . ., X;_q, Xjyqs- - -, X,,) With i
odd and those involved in the target have the same form with i even.
~ (03) (03) .
> (3) (0) : (3)
(013) /
(23)y - (o01) (23)
\1(123)
1)— iy 1) — —>(2)
( (12) @ Fig. 2. m (12)

ﬁollowing_ Roberts [8], we claim that n-cohomology should be developed using
n-categories A as coefficient objects. For this, the geometric input is an oriented
(n + 1)-simplex while the algebraic input is the operation of pasting in an
n-category. ’

This leads us to require a precise description of the “free n-category O, on the
oriented n-simplex A[n]”. These objects seem to be fundamental structures of
nature so I decided they should have a short descriptive name of the ilk of
‘cardinal’ and ‘ordinal’: I settled on ‘oriental’. The (n — 1)-cocycle condition is
expressed by an n-functor from the nth oriental 0, to an (n — 1)-category A
(regarded as an n-category with last composition discrete). The following dia-
grams provide the data which generate 0, for n =0, 1, ..., 6 using pasting. The
3-, 4-, 5-cocycle equations can be obtained from these diagrams. ~
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00 0
0, ‘ (01)
Q1
0, (02)
X ————
] 2

¥012)
(01) (12)
1

03
0 (03) 3
(013) '
23) 220 (0123) (o1) l (23)
1(123)
"'“"T‘"T‘"‘"“’z
O ///
(0234)° ’////;' \\\\\\Sgiiii
v, \ (01234) /
i (0123) (1234)
/ \\ (0134)
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(0235)
0s E, ——— £,
3 &
@(b\x \79‘5)
l(o2345)
E (2345)
1 p En.
%
3,
) Ell
(0123) —/59233,,,——»- .
N Ep %, (28u5)
, ~ S

;/(01234)

- Es (0124) }ROIQ“S) £,

(01:z§\\\ .

,532351,,—4' \\\\Q{ZZL\SL (1245)
07
\Wr

1(012345)

L, (0235) £,

(0
(0123) /(01235)
£,
(0133) igﬁ-.
Q;ﬁ Ny (2345)
Es (o13u5) Eg
\\12345)
(1345)
(0134)

(1245)

E £,
(0 /
; 145 ) A ¢ ,&?_3\3«3
7

where the E;, i=1,2,...,14, are given as follows:

291
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) /o__-_% ,; ) /,\1\4
1e// | AN\AT

253 2T

NN L AN
\\/ )

06 F (012456)

13 > Fas
(023456) . (012346)
FIG | FSO
(0123456)
(012345) ' (123456)
' Fsu

(012356)

where the F are given as follows:
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Fi o) e ~Lzg)
B | (34567 o
\{0%\ B o fo]?
© /(_o.suss) 2 (025 £ Sy
» 5 21 8) o
B ) M T B, B
Bao
~
3 % o l(ozase) - (o, A
N 2 9‘9\5‘ [ 6 >
S 2 ) g 5
/ (023u5) Z o
& Bou (.
B, G &‘ B
S s '
/ N J fo Bas
2 g & G
@ § B2s ~ 96) B
~ (é{? “Z% J (01256) g
(1234) & ~
;B 0
)
5 9 K
v P
% 9
5, (12u5)
D ————
(123‘0 Bys
Bg
0
4
%)
89 \ ‘ Bu
(12333 BxM
in which

: st ) By
23457 / \ : / \ (2345}
By £ B Bas g 2—%833

% l(();stz Bas - l(mzss).

517 _‘—")'Bxg 16
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Fue o) e~z
B (3456 .
> o PEANCE
S (08156) . £ o
(02 [
’ ) &) Bw\ o
Pl | b &
B:
2 z, 2 (02356) %
& % b ¥ \%
S <, & %
/ (02345} e <
D © B ’
N 2
B Vi C 255, B
6 @'\/ 09{(6‘ ’ 1
| / - ) A ' Bys
g 3 \‘:‘? )
@ g Bzs & g
& 5\ /Co1256) &
(1234) "’ 2 '
B, T /\:;1\(\ N Bys
A ) B (o, o
% \%(\ ) (17 & ) (&7’6
> 2\ ¥ ~
%n 2) (5] ©o
) (1245) N N &
(1123‘-\') BlS . \c’\,
Be
¢}
s,
Sy

in which

BZS

(2345) / \ / \ (23'4—5)
2

% l(orzss) 3 L(mzse)

By —————>B, Bl e—>By,
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F13

B .
B, B,

N o
° -~ (023u46) 2
kQ\k‘J % l e ~ é“S\J
3 S 2
a2 &*
B! A o)
% (02u6)
&) - B —————>B
) 28 23
,55/:’\ v @\’?’@ B,, :
N4 \{(ozuse)

BZB

(7ET0)

in which

Bso

Bz/ \B“ (01268) | p B, —(0126) B/ \
\ ! l(zause)/}"s

2

1@3»551/ , = | \

Bzf—"—>'B22 B13 —_—Fy
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FSS
B;
B, ' B,
‘o,
& a 1(02346) %2
Q ) ~ Z
¥ ©
g el
B, é,” B
(02u6) . 5
f’o . 828—————__} Bzg
&)
> % A\ c -~
.S,\’ N\~ L S % -~ \
N 2 < & 5§ \%
> 2 § \
(01246) 2
B!‘(r
By, (23u58) |
(a248 8
ol
(=2}
i ~ A
N
=
o
Xmuse) §
i (]
N
Bz
©
A
. L'&q’
./Bu
10 +
in which

B

'

Bs _'_'—.'87

2 ' B,
\ (ous6Yy (ouse) / \
B ———— B, =iy, l Ba

1(01234) 1 2 ! (01231)

{

Bas————> B3 _
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¥1234@

Oy

&
2 o)
& }Vv

\§32456)

6 ~
Fy (0136) o
bl
N = .
A

(23456)

(98€2)

(01u6) B

(0134)

Bia

gg)(\‘b)

l(o1uss) A~
g
&
~
§ Bi2
N

&
(@S

By

(11‘56)

o
s
6)

B9 /
T g, G

in which

\\\\\\i 34 (1234)
/,/////' (12 ) 2w o B, 223 B,

- ‘ \01456)
toiuse)

>
By —>Bs B1o
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Fao
(03\*‘6) 0236)
By
D 3 S
5 9 \
KQ\X ~ “/\:; N
Iy
. a\” 01236 )
—
5
o 136
QY 3u6) \ G
4 | (© (0136) &
Bss \

. - /01346) %\@
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v W Ba%*
B, By

b\
o5
O \(oause)
B,
o
& ©
& L()(bc')
2y
Ny B
Q
®
e
[t .
~ BIOO ’r\)\
=+ «w
[l 193
S A
A ‘12356)
(01345)
By / o) ; Bs
©
2 - o=
i ~
‘.’\/ B B Q‘?
() 7L ~
_asd—" NG, <
Bg c'}’? By
&
N
[ 3 o)
s 0o QJQ)
) Q3 &
W /
in which

GEN

Ba2
By Bz]/

A-DA
i

A .
M\‘B

39

\/\

{01236) B,

(oause) 36\337

Byp ~—uy

Byo ———Bu
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F.
64 WBa %
B2 . By
v o o
<2 (03u56) BANE)
& \ 3 Py S
o .
~ Bzo/ Bo
'5? 7 C (02356) {0 &
Q N 0. 7, 2
O % & l u{? 26 ) %\:/
I\ 5 8
(0345 (0256 ~
Bg \)h By o B,y ) \
Bys 14
Z %)1235)5(,’ G ~
3 s g 26) 8
~ b ! (01256) &
/ = 5) o B (
2% ; [7
By (01345) y 156 o ,
. B.,z 3 y
18
?\5 § (12345) ; .
B\ 1 A
) N/ $
B (1234) ’(/1_2:332____,.9316 "}:’)
o s &) B
)
Z
B, 8 L
T — "
By (12‘45)
in which
: B
/B“z 3\
B \ (0156) . (0156) B
8 1(123,_‘57817 Bis . Bs —-—-——-»Bs\ (12345) D18
Byg——>Bu

Bls—bBIG

and where the B, (i=1,2,..
omitted from the triangles wi
mined as in the diagram):

(ik)

i

J

.,42) are as follows (where the 2-cells (i j k) are
th vertices i, j, k since their directions are deter-

|Gk
(3k)
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0——>8§

TN //’\
/ \& ﬂ u
" AN /\x

TR 5
X/ NS

1. Higher dimensional categories
A category (A, s, t, *) consists of a set A, functions s, t: A— A satisfying the
equations
SS=t5=¥§, H=st=t,

and a function *:{(a, b) € A X A|s(a) = t(b)}—->A whose value a* b at (a b)
satisfies the equations

- s(axb)=s(b), Haxb)=1a),
such that the following axioms hold: -

s(a)=Hv)=v implies a*v=a; : (right identity)
u=s(u)=t(a) implies u*xa=a; : (left identity)
s(a) = ¢(b), s(b)=Hc) imply a=*(b*c)=(a*xb)*c. (associativity)

The functions s, ¢, * are respectively called source,‘ target, composition; when
they are understood the category (A4, s, ¢, ) is denoted by A. Elements of A are
. called arrows and the notation a: u— v is used to mean that s(a) = v and #(a) = v.
An arrow w:is in the image of s if and only if it is in the image of ¢; such arrows u
are called identities (or-objects) and satisty s(u) = t(u) =u. A pair(a, b) of arrows
is called composable when s(a) = t(b).

Example 1.1. (@) A monoid is a catecory for which the source and target functions
are-constant. : \
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(b) An ordered set U determines a category (A, s, t,*) where A = {(u, v) €
UxUlu=v}, s(u,v)=(u,u), tu,v)=(,v), (v,w)*(,v)=(u,w). Notice
that the set of identities in A is isomorphic to U. A category is called an ordered
set when a:u—> v, b:u— v imply a=b. ‘

(c) There are two cases of Example 1.1(b) which need to be distinguished. Let
U be a set X with the discrete order: u < v when u = v; the resulting category is
denoted by X;. Let U be a set X with the chaotic order: u < v for all 4, v € X; the
resulting category is denoted by X_.

(d) A graph G consists of a pair of functions s, t: P,G— P,G. Elements of P,G
are called 0-paths (or vertices) while elements of P,G are called 1-paths (or edges).
For n>1, an n-path is an element (a,, . . . , a,) of (P,G)" such that s(a;) = «(a,, )
fori=1,...,n—1. This gives a graph s, t:P,,G—> P,G where P,G is the set of
n-paths and s(a,, ..., a,)=s(a,), {a,, . .., a,) = Ha,). The free category FG on
the graph G is (Zn -0 P G, s, t, *) where s, t are the identity on P,G and are given
as above on n-paths, and .

(aj,...,a,)*(by,..., b ) ={ay,...,a,,b,...,b,).
A graph G is called a tree when FG is an ordered set.

A 2-category (A, sy, ty, g, §1, 1), *;) consists of two categories (A4, sy, £y, *,),

(A, s, t,, =) satisfying the following conditions:
(1) 5150 = 5 = $o51 = Soty, tg = toSy = Loty ;

(i) so(a)=to(a’) implies s,(a%ya’)=s4a)*ys,(a’) and t(ax,a’)=
ti(a)*o ty(a’);
(i) 5,(a)=1,(6), 5(a") = B(b), 54(@) = to(a)"imply (a%, B)%o(a'#;b) =
(a%oa") %, (b*,b").
'Ihe identities for *, are called O-cells and the identities for *, are called 1-cells.
The notation

is used to mean x € A, 5,(x) = a, t,(x) = b, so(x) = u and ty(x) = v.

Example 1.2.(a) A 2-category for which s, ¢, are constant automatically has
S0 =815 by =1y, %o =%;. A category (4, s, t, *) is called commutative when s(a) =
t(b) implies t(a) =s(b) and ax*b=0>b+*a; this holds precisely when
(4, s,t,%,5,1,%) is a 2-category. Hence a 2-category for which s,, t, are constant
amounts to a commutative monoid. (This is the essence. of the argument of
Eckmann—-Hilton [2] which proves that the higher homotopy groups are com-
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mutative.) Clearly a category which is an ordered set is commutative if and only if
it is discrete.

(b) Each category X yields a 2-category X, on the same set with sy, £;, %,
agreeing with the original structure on X and s,, ¢;, *; the discrete structure.

(c) Each category X yields a 2-category X, on the set {(x, y) € X X X|s(x) =
s(y), #(x) = 1(y)}, and, identifying X with the diagonal in X, with s,(x, y) = s(x),
o(x, Y)=Hx), (x, )%, y)=@*x, y*y), s(x, Y)=x, &, y)=y,
(y, 2)*, (x, y) = (x, z). If X is a monoid, then the underlying set of X is X X X
and s,, t,, #; give the chaotic structure on X.

The first infinite ordinal is denoted by w; that is, @ ={0,1,2,...} as an
ordered set. “

An w-category (A, (s,, t,, ,,),,Ew) consists of categories (A,'s,, ¢,, *,) for each
n€ w such that (A4,s,,,,*,,S,,t,,*,) is a 2-category for all m<n. The
identities for *, are called n-cells. A cell is an element of A which is an n-cell for
some n. The notation a:u—>,v is used to mean that s,(a) = u and ¢,(a) =v.

For r € w, an r-category is an w-category for which all elements are r-cells: this
means that the structures s,, ¢,, *, are discrete for n=r. For r =2 there is no
conflict with the previous deﬁmtlon of a 2-cateoory A 1l-category is a category,
and a O-category is a set.

An  w-functor [:(A, (S, b * ) nea) = (A (S0 1y %) uee) i 3@ function
f:A— A’ such that fs,=s.f, ft,=t.f, and s,(a)=t,(b) implies fla*, b)=
fla)*, f(b), for all n€ w. In an obvious way, w-functors between (small)
w-categories are the arrows for a category denoted by w-Cat. Let r-Cat denote
the sub-category of w-Cat obtained by restricting to w-functors between r-

categories.

Example 1.3.(a) For any commutative monoid M and n € w, there is an n-
category K(M, n) for which s,, ¢,, *, for all r < n are the source, target, composi-
tion functions of M as a category. For n =0 notice that M only needs to be a set
and for n =1, M does not need to be commutative.

(b) Each r-category X yields an (r+ 1)-category X, on the set {(x, y)€E
XX X|s, 1) =5,_4(3), t,.,(x) = t,_;(y)} with 5,,(x, y) = 5,(%), £,(x, y) = £,(x),
(x5 V) *, (%, y) = (x*,x', y*,y") for n<r, and s5,(x,y)=x, t(x,y)=y,
(, 2)*,(x, y) = (, 2).

(c) The categories w-Cat, r-Cat are locally finitely presentable in the sense of
Gabriel-Ulmer [4]. In particular, (small) limits and colimits exist. Thus new
w-categories can be constructed from diagrams of old ones. Furthermore the
underlying set functor preserves limits and filtered colimits; so, for example,
products are easily constructed on the products of the underlying sets.

(d) The constructions of the above (a)-(c) can be combined. Let M denote a
sequence My, M,, M,,... where M, is a set, M, is a monoid and M, is a
‘commutative monoid for » > 1. There is an w-category
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vy =11 Kk, n),

ncw

which, for a particular choice of the sequence M, will be used later; a more
explicit description will be given at that time.
(¢) The free w-category 2,, on a singleton set is the unique w-category on the set

(2Xw)U{w}={(p,m)lp=0,1;m=0,1,2,...}U{w,}

for which s,(w) = (0, n) and ¢,(w) = (1, n), see Fig. 3. The remaining equations
which fully describe 2 are

s.(p, m)=1t,(p,m)=(p, m) form=n;
s.(p,m)=(0,n), t(p,m)=(1,n) form>n;
s, (p,m)=t,(p',m') implies
. o~ J(p,m) form<n,
(p.m)*, (p',m") = {(P',:m’) form' =n;
and
w*, (0,n)=0=>1,n%* .

For any w-category A, each a € A determines a uﬁique w-functor @:2, — A
taking @ to a; indeed, @(0, m)=s,,(a), @(1,m)=t¢,(a). So there is a natural
bijection ' :

A= w-Cat(2,, A).

In other words, the underlying set functor w-Cat—> Set is represented by 2.

(0,2)

©(0,0)
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For w-categories A, B, there is an w-functor w-category [ A, B] described as

follows. An element of [A, B] is an w-functor f:2_ X A— B. The nth source and
target functions are given by

sn(f)(P’ m, a) = tn(f)(P> m, a) =f(p’ m, a) form=n,

s.(f)(p,m,a)=s5,(f)w,a)=f(0,n,a),
and
tn(f)(p9 m, a) = tn(f)((x), a) =f(1’ n, a) form>n.

The nth composition is, for s,(f) =1,(g), given by

f(p,m, a) form=n,
(f*.8)(p, m, a) = {f(p, m,a)*,8(p,m,s,(a)) form>n,

(f*, 8)(w, a) = f(w, a) *, g(w, 5,{a)) .

The asymmetry in the definition of composition is only apparent: the commutative
diagram

é(w,sn(a)) ) flw.5,(2))
8(0, n, 5,(a)) ——— g(1, n, 5,()) = f(0, n, 5,,(a)) —— f(1, n, 5,,(a))
8(0,n.a) g(w,a) &1, n, a) l =£(0,n,a) flw,a) } f(1,n,a)

g(O, n, tn(a))m 8(1, n, tn(a)) =f(0’ n, tn(a))"')7(7,'["_(5> f(l’ n, tn(a))

yields the equality
f(w, a)*, g(o, 5,(a) = fl@, 1,(@) *, g(w, @)

from which also follows (by taking s,,, ¢,,) the same -equality with o replaced by
(p, m) for m>n.

Theorem 1.4. The category w-Cat is Cartesian closed. Indeed, the natural bijection
w-Cat(A X B, C) = w-Cat(A, B, C]) |

takes f: AX B— C to f: A—[B, C] where
Fay=(@2,x B2 axB5C).

Furthermore, if C is an r-cdtegorvy,‘bt‘hen sois[B,C]. O
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As a consequence of Theorem 1.4 it is possible to consider categories s{ with
homs enriched in w-Cat (in the sense of Eilenberg—Kelly [3]). Such an &/ consists

of

—a set of objects;

~for objects u, v, an w-category (u, v);

~for objects u, v, w, a composition w-functor *: (v, w) X A(u, v)— A(u, w);

and
—identity O-cells 1, € #(u, u);
such that * is associative and the 1,’s are two-sided identities for *.
Each such o gives rise to an w-category A defined as follows:
A= {(u, a,v)|u, v are objects of o, a € A(u, v)},
sow,a,v)=u, ty(u,a,v)=v, '
(v, b, w)*,(u, a,v)=(u, b*a,v),
S, (u, a,0)=5,,(a), t,(u,av)=t_.(a),
W, b,w)*,(u,a,v)y=(u,b*,_,a,v).
Let {w-Cat)-Cat denote the category whose arrows are enriched functors
between small (w-Cat)-enriched categories. Each enriched functor F:of— %

clearly induces an w-functor between the w-categories obtained as above from &,
PB. This defines a functor

(w-Cat)-Cat— w-Cat .

/Theorgm L.5. The functor defined above is an equivalence
(w-Cat)-Cat = w-Cat

which, for each eardinal r, restricts to an equivélence
(r-Cat)-Cat=(r+1)-Cat. O

For O-cells u, v in an w-category A, Theorem 1.5 suggests the notation A(u, v)
for the w-category whose underlying set is

{a€ Als(a) = u, to(a) = v}

and whose compositions are the restrictions to this set of the eompositions *,
*,,... of A (notice that *; is omitted). _ ‘

In a set it is possible to discuss equal elements; in a category one has isomorphic
objects; in a 2-category O-cells can be equivalent. This leads to the recursive
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definition of what it means for O-cells a, b in an w-category A to be r-equivalent.
For r =0, this means a = b. For r >0, this means there exist elements x, y of A
satisfying the conditions

so(x)=to(y)=a, so(y)=t,(x) =0,

y*,x, a are (r — 1)-equivalent in A(a, a),
and
x#*,y, b are (r — 1)-equivalent in A(b, b).

From this the notion of r-equivalence is obtained. For this purpose it is
illustrative to consider the diagram below, called the exponential wedge,

0
101
2120212
323132303231323
4342434143424340434243414342434

-is which each row is obtained from the preceding row by wedging the next unused
integer between the consecutive entries and putting it on each end. The ith entry
in the rth row is r(i) = r — e, — 1 where i = 2°k where k is odd.

Suppose u, v are O-cells in A. An r-equivalence (x, y) from u to v is a pair of
families of elements x;, y; of A, indexed by i=1,2,3,...,2" —1, satisfying the

following equations: .

Sy x) =t (¥:) Sy (Vi) = ty(x) ,
U=y *.0%, Xi* ) Yi ™ Yiv1 *r(i+1)xi+1 -
X1 ¥y =V .

~ For example a 3-equivalence from u to v involves arrows

X4

uz2v in(4, %)),
Y4
X2 X6
U2 Y, H Xy, Xy4%g Y S0V in(A4,*),
¥y Ys )
X3 X3

= s
”‘y—l)’2 ¥ X, XKy Y2<; Yy ¥ Xy,

X5 X7 . ;
x4*0y6fy6*1x6? X ¥y y6(y_‘_:v _m(A,*2)>
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satisfying the eight equations

U=y;*; X%, X%, Y1 = Y2 ¥y X5
Xy ¥ Yo = Y3 *¥3 X3, X3¥; Y3 = Ya*oXs >
Xy ¥ Y4 = Vs ¥3 X5, Xs*, Y5 = Y6 *1 X6>

Xe*1 Y6 = V1¥2X7, X%, y,=U.

Suppose (x, y) is an r-equivalence from u to v and (k, k) is an r-equivalence
from v to w. An r-equivalence (k, k) *(x, y) from u to w will be defined by
recursion on r. For r=0, the families x, y, h, k are empty and u =v=w, so
(h, k) * (x, y) is the unique 0-equivalence from u to w. For r >0, put p =2""! and
define (a, b) = (h, k) *(x, y) as follows:

ap:hp*oxp’ bp:yp.*okp’
(@35 D:)ocicy = (Vp *oBi% o X, Yy *o Ky %o X 2 do<i<p * (Xis Yido<icp »
(a;, bi)p<i<2' = (h;, ki)p<i<2’ * (h *oX; %o Ky By %o ¥ ¥ kp)p<i<2r .
For any w-category A, there is an w-category r-eq A of r-equivalences in A
defined as follows. The elements are quadruples (u, x, y, v) where u, v are O-cells

in A and (x,y) is an r-equivalence from u. to v. Put so(u,x, y,v)=u,
to(u,x, y,v)y=v, and (v,h,k, w)*,(u,x,y,v)=(=u,, k)*(x,y),w). For

n>0, puts (u x, y,0)=(u,s,(x), s (y) v), t,(u, x, y,v)=(u, t,(x), 1,(y).v).

‘and  (u, x', y, )%, (u,x, y,v)=(u,x"*,x,y *,,y,v) where  s,(x), =s,(x;),
(x'*,x),=x}*,x;, and so on.

The function r-eq A— A which takes (u, x, y, v) to x,_; is an - functor An
r-groupoid is an r-category A for which this function is surjective.

- 2. Orientals: the definition

As usual in algebraic topology, the ordinal # + 1 (which means {0,1,...,n} as
an ordered set) is denoted by [r]. Since ordered sets are examples of -categories,
there is a full subcategory 4 of Cat whose arrows are order-preserving functions
between the ordered sets [n] where n € w. For each n there are n+ 1 monics

=08, =:-=4,:[n—1]—[n]
such that the image of 4, does not contain i, and there are n epics
soy=-=0,,:[n]>[n-1]

such that 4, 0,4 d,,,.
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A simplicial set is a functor X : A°® — Set. Each arrow a :[m}— [n] in A gives a
function X, — X, whose value at x € X, is denoted by xa. Elements of X, are
called elements of X of dimension n. The ith face of x € X, is xd, which is called an
even or odd face of x according as i is even or odd. (It is sometimes convenient to
write [—1] for the empty set and to take X_, to be a singleton set, so that the
unique function X;— X_; can be regarded as the value of X at the unique
function d,:[~1]—[0].) Call x € X, degenerate when x = yo, for some y € X, _;.
 Each category A determines a simplicial set Cat(—, A): 4% — Set called the
nerve of A and denoted by AA. An element of AA of dimension n is a functor
a:[n]— A; for a:[m]— [n], the element aa is the composite of a4, a as functors.
Such an a is non-degenerate if and only if it reflects identities; in the case where A
is an ordered set this means a is monic.

The standard r-simplex is the nerve A[r] of the ordered set [r]. The standard
w-simplex is the nerve Aw of the ordered set w.

A simplicial map f: X— Y between simplicial sets X, Y is a natural transforma-
tion between the functors X, Y: A°° — Set. Simplicial maps are the arrows for a
category [A°%, Set].

The cardinality of a set z is denoted by #z. For x, yCz, put x—y =
{i€x|iZy}, and write u=x+y when u=xUy and 0=xNy. The set of all
finite subsets of z is denoted by %,z and the set of subsets of z of cardinality n is
denoted by (%). There are obvious isomorphisms of sets

~ z x+y\~ (X y
g’fz—"gw(n)’ ( n )—hg;n(k))((k)'

The set o of finite ordinals is well ordered; each subset u = {u,, u;,..., u,} of
o can be organized so that u, <u, <---<u, yielding an order-preserving monic
u:[n]— o whose value at i is the element u; of u with i predecessors; and write
u=(uy, Uy,...,u,). In this way the set (,%;) is identified with the non-
degenerate elements of Aw of dimension n. For u,v€(,%,), write u=<v when
u,=v, for all i €[n]. '

For rC @ and x € o, put x/r = {k € x| k= r}. In the case where r € x, the set
x—{r} is identified with the monic xd, where #x/r=i+1; that is xd,=
(Xos Xas oo e s Xi_1s Xings oo oy Xoeys Xp) Where x=(x4, %;,...,%,) and r=x,.

A subset S of (,,% ) is called well formed when distinct elements of § have no
common faces of the same parity; that is,

(WF) X, yES,xd,=yd,i+jeven > x=y.

For m =0 this is taken to mean that S is a singleton.
The set of faces from S C(,%,) of parity p (=0 or 1) is defined by

@FS={x9,|xE S, i+ peven}.



312 - R. Street

If S is well formed, each element of ¢S is an odd face of a unique element of S;
however, odd faces can be even faces. Define

p'S=¢'S—¢° and p°S=¢5—¢'S.

So p'S is the set of odd faces from § which do not occur as even faces.
The objective is to define the nerve of an w-category; this should be a functor

w-Cat—[A®", Set]

with a left adjoint. By a general categorical argument due to Kan [5], this
amounts to defining a functor

0:4— w-Cat

which will be the composite of the left adjoint with the Yoneda-embedding
A—[A, Set]. The nth oriental will be the n-category O, obtained as the value of
0 at [n] € A. The technique will be to define a large w-category &, for which
compositions are easily described, to cut down to a sub-w- category 0,of ¥, and
to obtain 0, as a sub-n-category of 0.

The w-category N, is /(M) (as in Example 1.3(d)) where M, is the commuta-
tive monoid 2,(,%;) whose composition is bmary union. More explicitly, the
elements of N are families

0
a= (arll’ an)n_Ew

where a; is a finite subset of (,%,). Sources and targets are given by the
equations

al, form<n, [a! form<n,

1
s,(@)f =1a, form=n, t(af=1a form=n,
0 form>n; 0 form>n.

For s,(a)=1t,(b), the compdsite a*,b is given by the rule

al =b?l form<n,
bl forg=landm=n
q n s
(ax,b), = al forg=0andm=n,

m

ap Ubl form>n.

Notlce that an »- cell ais determmed by S, 1(a) t,_4(a) and a single finite subset
a,=a of (,%,), see Fig. 4.
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. bt
n

= af
b?\-l -1

i = al
bn-l a1

1 1 M 0 [

a .. ub . a). . ub
1 r 7 n+1 Y Pn+q : n+1 Y “nty 0 = g0
by, = N br-1 = n-g

Fig. 4.

Define 0, to be the subset of ¥, which consists of the cells a of ¥, satisfying the
following conditions for all p, g €[1}, m € w:

a’ is well formed; 1
al =pfal, +adNal . | 2)

It is clear that the source and target functions of W, restrict to 0,. What is not
at all obvious is that @, is closed under the compositions of &, and is hence an
w-category. The proof of this will be an excursion into combinatorics which will
reveal  the inner structure of O,. Before embarking, some remarks on the
2-category structure of 0, are in order. ‘ ’

To say a € ¥, is a O-cell is to say ap = ag C (¢ ) and a?, = 0 for m >0; to say a is
also in @, is to say ag is a singleton. So ‘the 0-cells in 0, can be identified with
elements of w; they are in fact singleton sets of singleton sets of ordinals.
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(On)
©0) s )

(o1)(12)...(n—1,n)
Fig. 5.
To say a € N, is a 1-cell is to say a} = a C (%) and a%, =0 for m > 1; to say a is

also in @, is to say aj = {(h)}, ag = {(k)}, a; = {(h, hy), (hy, 1), ..., (h,, k)}
where h<h;<h, --<h,<k in w. So the 1-cells in 0, can be identified with

arrows in the free category on the graph
w
S5, ¢t ( 2)——> o where s(u) = u,, {u)=u, .

The 2-cells @ of &, which are in 0, and have a; = {(0)}, ay={(n)}, a; =
{(0, n)}; a2={(0,1), (1,2),..., (n—1,n)} can be identified with meaningful
ways of inserting pairs of brackets in a word of n letters, see Fig. 5.

The set S = al = a) which remains to be given must be well formed and satisfy
pIS={(0n)}, p°$={01),(12),...,(n—1,n)}.

Such a set S can be depicted by a diagram of the form

e TN
/ A
\3‘\)4__ AR

in which each element (i j k) of S appears as a triangle

j —— k

N/

]
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The arrows' joining the outside consecutive ordinals are then labelled by the
letters in the word. For example, take n=6 and S={(016), (124), (146),

(456)}. The diagram for S gives the associated way of bracketing the word
ABCDEF, see Fig. 6.

The number of meaningful bracketings of an n-letter word is (1/n!)2""'(2n —
3)(2n —5)--+3-1 and, according to A. Joyal, has the name of Catalan associated
with it. Starting with n =2, one obtains the sequence

1,2,5,14,42,132,429,1430, . ...

The elements of @, are those a € 0, for which a2 C( ,,,[',',]1) for all p€[1] and
m € o (although it suffices to have this for m =0 as will become clear).

3. Orientals: their structure

Each finite subset z of @ determines an element (z) of N, given by

(z),’,’,={x€(mi_1)

for p =0,1 and m € w. In particular, for z = (z,, z,, . . . , Z,,), this means

r€z—x = #x/r has parity p}

(2)n=0 form>n, (z)7={z} forp=0andp=1,

(Yo ={zdli+piseveny, {z}o={{z}}, {z}o={{z.}}.

((AB) (CD)ENF)
¢ ——— 5
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Proposition 3.1. Each (z) is in O,. In fact, {z)? is well formed and p®(z)? =
(z)I_,form=n.

Proof. Suppose x, y € (z)}, are distinct, x,=yd, and i<j. Then x,€z -y,
Y;€z—x, #ylx;=1i, #x/y;=j+1. So i, j+1 have parity p. So i + j is odd. This
proves that (z)? is well formed.

Notice that w + {i} € (z)? if and only if for k € z — w, the parity of #w/k is p
for k <i and not p for k> i.

Suppose p is not g. Take w € p?(z)? . If {k € z — w| k < i} is non-empty, then
its largest element j has w+ {j} € (z)? and #w/j of parity p contrary to
w&ZdP(z)E. So {k€z—w|k<i} is empty and wE (z)?_,. Conversely, if
w€E (z)P _,, then the first element i of z — w is unique such that w + {i} €(z)?;
moreover, the parity of #w/i is p; so wE p¥(z)5.

Suppose p is q. Take w € p?{z)>. If {k € z — w|k > i} is non- empty, then its
smallest element j has w+ {j} € (z)% and #w/j of parity not p contrary to
w€ p?(z)P. So {k€z—w|k>i} is empty and we (z)2_,. Conversely, if
wE (z)1_,, then the last element i of z — w is unique such that w + {i} € (z)Z;
moreover, #w/i has parity g; so w € p?(z)?. [J

Consequently the set 0, is not trivial. The elements (z) are in fact the building
blocks for O, : it will turn out that O, is the smallest sub-w-category of N, which
contains all the elements (z). At this stage it is not even clear that, for z€ (%),
the (n — 1)-cell s,_,(z) is a composite of cells (u) with #u=n.

Suppose S is a subset of (,,%;). Let < denote the smallest reflexive transitive

‘relation on § which has x <y if xd, = yd; with i even and j odd. For m =0, this is
understood to be the equality relation. Form =1, if x<< yin S, thenx <y in ()
(that is, x, =<y, and x, = y,). For m>1 the relation < is more involved.

Lemma 3.2. (@) The relation < on any S C(,,%1) is antisymmetric.
(b) x<dyin(z), ifand only if z~x<z—y. _
(© x<tyin{z) ifand only if z—y=<z—x

Proof. (a) If x < y <J z in S, then the last element y,, of y is between (or equal to)
-the last elements x,,, z,, of x, z. If x,, =y, , then x < y in S implies x4, < yd,, in
{ud,,|u € S}. By induction on m, x < y < x implies x = y.

(b) Suppose x, y € {z}} with u=x4,= = yg;, where i is even and j is odd. If
'k € z— u, then #u/k is odd when either k<x,ork>y,, and, #u/k is even when
either k> x; or k> y,. Thus y, <x; and z — u has no elements between y; and x,.

Hence z—x=(z-u)+ {y].}S(z—u)+'{x,.}=z—-y. »

Conversely, assume z—x=<z-~y. To prove x<y induction on r=
Ekez_y (#(z —x)/k —#(z — y)/k) will be used. If r=0, then z—x=2z~-y s0
x=y. If r>0, the first element of z — y such that any larger k has #(z — y)/k =
#(z — x)/k must be an element x; of x. Put u = xd, and let & € z — x be such that
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#(z—x)/h=#(z~y)/x,. Then w=u+{h}€(z),, x<<w and, by induction,
w<y. Sox<iy.
(c) This is similar to (b). [

The next combinatorial tool which must be introduced is the function

z
al.<m+1>—>g’z

given by al(x) = {x,|m — i odd}. Notice that for u €(,,%,) and m ~ j even, one
has

al(ud;) = al(ud;,,) -

A subset S of (%) is said to satisfy the alternating position condition when the
restriction of al to § is monic; that is

(AP) x, yES,al(x)=al(y) = x=y.

Lemma 3.3. Each (z)? satisfies (AP).

Proof. Take distinct x, y€ (z)Z, and assume al(x) = al(y). Then there exists j
with x; 7 y;; say x; <y;. Then #y/x;=j, #x/y,=j+1. Butx,€z—y,y,€z—x
imply #y/x; and #x/y; have the same parity p, a contradiction. []

The interplay between well formedness and the alternating position condition is
made clear by the next two lemmas which concern the process of replacing faces
of one parity by faces of the other.

Lemma 3.4. Suppose SC(,,%;), satisfies (AP) and u€(,,>,) has {u)>CS.
Then '

@ SN () is empty;

(b) T=(S— (u)>)+ (u)l, satisfies (AP);

(© p°T=p”S for p=0,1; and - ~

(d) if S is well formed and p*S C{z)% _, for m — p odd, then T is well formed.

Proof. (a) For m even, al:{(u)’ — Pz and al:{u). — Pz have the same image.
For m odd, the image of the former contains precisely one more element (namely,
al(ud,)) than the image of the latter. So .y € ()}, implies there exists x € {u),
with al(y) = al(x); but then x € S, so y &S by (AP). So (a) follows.

(b) For m even, T has the same cardinality as S and al: T— Pz, al: S— Pz
have the same image. For m odd, T has cardinality one less than § and the image
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of al: T— Pz has one fewer element than the image of al: §— 2z. So T and the
image of al: T— Pz have the same cardinality. So T satisfies (AP).

(9) Assume w € p”T — p”S. Either w is a p-parity face of § — (u)?, or of ()2,
In the former case w must also be a face of S of parity g # p (or else w € p”©S);
since w is not a g-parity face of T, it must be a g-parity face of (u)°. If wis a
p-parity face of (1), then the well-formedness of S is contradicted since w is a
p-parity face of S — (u)°. Sow € p?{u)? = p?{u)l, C ¢ T contrary to w € p?T.
Thus w must be a p-parity face of (u). . If w is a g-parity face of (u)., then w is
a g-parity face of T, contrary to w € p”T. So w is not a g-parity face of (u).,. So
weEpP(u)), =p?(u)y,,. Sowis a p-parity face of S. If w is a g-parity face of §
then, since w € p?T, it would have to be a g-parity face of {(u)° contrary to
we p?(u)’. So we& p*S, a contradiction. This proves p?T C p*S. Since S=
(T—(u)l)+ (u)?, one obtains the reverse inclusion by interchanging (u)? and
{u)} in the above argument.

(d) This part does not have such a direct proof. Suppose a € S, m — k is even,
and p is not the parity of m. It will be required to know that, if v € ¢S satisfies
the condition (*) below, then v = ad,.

. For all e €[m] with m — e even, if e<k, thenv,_;=a,_; <
) v,=<a,, while if e>k, thenv,_,=4a,_,<v,_,<a,.

What must be shown is that the set
X = {x € §|xd, satisfies (*) and xJ, # ad, for some odd m — i}

is empty. Since S is finite, X non-empty implies there is an x € X which can be
taken to be minimal or maximal with respect to the order < on S; take the
* former for m even and the latter for m odd. So there is m — i odd with v = x4,
satisfying (*) and v & ad,. Since a, € z — v and #v/a, = k is not of parity p, one
has v €(z)7_,. So v & p*S. So v =y, for some y €S with m — j even. For m
even, y < x; while for m odd, x < y. To obtain a contradiction to the choice of x it
remains to show y € X. If j = k, then v = y4, so (*) gives al(y) = al(a); so (AP)
gives y = a; s0 v = ad,, a contradiction. For j <k, put w = yd,,,. Then v, = w, for
e #j while w; =y, <y,;,, = v;, from which it follows that w satisfies (¥); so y € X.
For j>k, put w=yg, ;. Thenv,=w, fore##j—1while v;_;=y; <y;,; = w;_;,
from which it follows that w satisfies (*); so y € X.

The proof of (d) can now be given. To see that T is well formed, take x, yE T
with xg, = yd;, i+j even. Since § and (u)! are well formed, it remains to
consider the case where x €S — (u)? and y = ud, with » odd and to obtain a
contradiction. In this case, ‘

. ud;d,_; forj<r,
x6t=y&,=u0,o7,= uﬂi+1ﬂr forrsj,

If j<r and j is even, then i +r—1 is even so, since S is well formed, x = ug,
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contrary to x & {(u)®. If r=j and j is odd, then i + r is even so, since S is well
formed, x = ug;,, contrary to x & {u)?. The remaining cases have xd, = ud,d,
where A <s and h, s are odd. If m and i are even, then #(xd,/u,) = h which is
odd, so x3, Z{z),_,, so xd, & p°S, so xd,= x'd,,, for some x' € S and i’ odd. If m
and i are odd, then #(xd,/u;) = s — 1 which is even, so x3, Z(z),,_,, s0 x3,&Z p'S,
80 xd; = x'd,, for some x' € S and i’ even. Consequently, it can be assumed that
m — i is odd. For m even, put a = ud,_, and k =s — 1. For m odd, put a = ud,,,
and k = h. Then v = xd; € ¢”S satisfies condition (*) above. So ud,d, =x9,=v =
ad, = ud,.d,. where h' <s' and s’ — h’ is odd; a contradiction. O

Lemma 3.5. Suppose s° C(m%1) satisfies (AP) and ql, W ... 0 €(,%,) are
such that (u')° C 8" where §'= (85" — (u')°) + (W)} fori=1,...,r. Then
(Wi, ..., W'Y C(,%,) is well formed.

Proof. Induction will be used to prove §” N {u')° =0 for r>0. The case r=11s
Lemma 3.4(a). Suppose r>1 and we€S N{(u")?. Then we S =(5"""~-
W)Yy +(u")); so we(u')] since w&S ™' by the inductive assumption. So
we (u')? N (u')}. This implies u' <u” in (,,5,). Since al(w)Eal §" Cal S’
we (u')?, and S satisfies (AP), there exists v € (u')’, with al(v) = al(w). Since
al{u')? Dal(u’)}, Dal(w), there exists w'€ (u’)) with al(w')=al(w). So
{s|1=s, u' <du’,da€ («')?, with al(a) =al(w)} contains r and so has a least
element s <1 with &' <tu* and a € (u*)?, having al(a) = al(w). If a € (u'),, for
some ¢ < s, then &’ < u' and there is b€ {u')° with al(b) = al(a); so al(b) = al(w)
and u' <’ contrary to the choice of s So a & (u')}, for all t<s. But a€
(WY st e S+ (W) + -+ (T s0 age ST =(S0 = (u')2) + (u'),.

By (AP) for S', one obtains a=v. So a€ (') N{(u')}. So v’ <u'. So
(Lemma 3.2(a)) u’'=u". So a€{(u")2 N(u')., a contradiction. Hence §'N
(u")? is empty, as asserted.

Induction will be used to prove $'N (u’). =0 for r>1. For r=2, Lemma -
3.4(a) applies. Suppose r>2 and weS'N(u").. Then weSs'=(5*-
(®)L)+ (4*)°. By induction, w&S% So we («' ). N (u?)° c(u') NS =0
by the first result; a contradiction.

The above results together with (u’)) CS’, (u'). CS' yield (u')2N
(u")? =0 for p=0, 1. The lemma follows. [J

Lemma 3.6. Suppose U C (%, )is well formed with p°U cs 0 C(m*+1)- Then the
elements of U can be listed u', v ..., u" such that {u')?, CS‘_I,'S' =(§"1-
(WY + (i), fori=1,...,r,8 =(8°—p°U)+ p'U, and, v’ A v’ in U implies

j=i.

Proof. This will be proved by induction on #U. If U is empty, then S°=
$°-p°U )+ p'U. Otherwise, choose u € U which is minimal with respect to the
order < on U. Put V= U — {u} and observe that, because U is well formed and
u is minimal, one has p°U = p°V + {u)°, p'U=(p'V—(u)?)+ {(u)l. Since
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VCU is well formed and p°V=p°U— (u)° CS8° the inductive assumption
yields a listing u',u’ ..., u~" of the elements of V.such that (ui)?,,CSi_l,
S'—(S' Vo)) + (') for i=1 s 1, ' =("-p V)+p V, and
u'<tu’ in V implies j=<i. But (u) CprCS' L so put u'=y and §" =

(8" = (u')) + (u'),,. Since u’ is minimal, i <r implies u ‘Au'. Also observe

that
S = (8" = (u)n) + (u),

=(($° = p°V) + p'V) = (u)p) + (u),,
=(S"— (p°V +{(u)o) + (p'V—(u),) + (u),,
=(8°-p’U) +p'U. O

Lemma 3.7. IfSCTC(m“)wzthTwellformedandppS p’Tforp=0and 1,
then S=T.

Proof. Suppose T — S is non-empty and let x be an element which is maximal
with respect to <1 If xd, € p°T = p°S, then there exists y € § with xd, an even
face of y; since T is well formed, x =y which is contrary to x&S. Hence
%3y & p°T. So x3, = ud, for some u € T and i odd. So x < u, x # u. By maximality
of x, it follows that u€ S. Since T is well formed and x &S, it follows that
ud, € p'S = p'T contrary to ud, = xd,. O

For z € %o, subsets C¥z or P(,,%,) are recursively defined as follows:
Coz={{(z)n},
k____I._‘O 1 (Z) 0 , k-1}
C,z l(S (u)))+(u), |ue a2 ,{u), CSEC, z{.

That this makes sense follows from Lemma 3.3 and Lemma 3.4(a), (b). Further-
more, define

C,z=U Cz,
and - -
D,z —{SC( + 1)'5 is well formed and p”S = (z)2_

forp=0,1}.

The relationship between 0, and D, z is clearly as follows:

an m-cell a of ¥, with af = (z)? fork<m and p=0,11is
in 0, if and only if a., =al, €D, 2

" The goal is to prove D,z = C,,z and so obtain a more constructive description of
elements of 0. ‘ '
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Proposition 3.8. (a) Each element C,,z satisfies (AP).
(b) C,zCD,z.
(© C z—{(( 2)o = P°U)+ p'U|U C(,,%,) well formed, p°U C (z)°}.
@) (z).ecC,z.
() If U,V C(,%,) are well formed with p’UCSEC,z and pOVC(S—
p°U)+ p'U, then U,V are disjoint, U + V is well formed, and u € U, v €V imply
vf(u inU+V.

Proof. (a) Lemma 3.3 and Lemma 3.4(b).

(b) Proposition 3.1 and Lemma 3.4(c) , (d).

(© C,zis a subset of the right-hand side by Lemma 3.5. The reverse inclusion
is obtained from Lemma 3.6. ~

(d) Recalling Proposition 3.1, take U = (z)5,, (or {z)},,) in (c).

(e) Lemmas 3.5 and 3.6. [

Lemma 3.9. If S€ D,z and p # q, then there exists a well formed U C(,%,)
such that pPU C{z) and S = ((z)! — p?U) + p?U.

Proof. It will be shown to begin with that the lemma follows from the truth of the
following statement for given z, m

(%) if SED, z and p # g, then either SC{z)}. or (u)? CS
for some u€(,,5,).

Note that, by Lemma 3.7, the inclusion SC(z);, in (*) implies the equality
§={z)-
Assume (*) is true. To prove the lemma take S € D, z. By iterated application
of (*) with p =0 one obtains u',...,u" €(,,3%,) such that (---(S— (u")1)+

)+ (W) ={(z)° (recall Lemma 34(c)) So S=(--({z)° —(u)°)+-- )+
(u Y ECnz.So U={u',...,u"} is well formed by Lemma 3.5 and S satisfies
(AP) by Proposition 3. 8(a) Iteration of (¥) with p=1 produces v',...,v° €
(»%2) such that (---(S—(vl))+--)+(v*).=(z)!. Hence S=
¢ (20 = (L) + )+ ()%, and (2= (- (((--- ({2)% — (w)0) +
() = (WD) + o)+ (VP Put V={v'...,v°}. By Lemma 3.5,
U +V (and hence V) is well formed. This gives Lemma 3.9 by taking U C (,,%,)
when p=0and VC(,%,) when p=1.

It remains to prove (*) by induction on #z=n+1. For n=m one has
D,z ={{z}} and (z),, = (2), = {2z}, so (*) is trivially true. Inductively assume
(*) (and hence, by the above, the lemma) for 24, in place of z. Take S € D, z. Put
M={x€S|z,&x}, N={x€ S|z, Ex} Né,, = {xd,|x € N}; these are all well
formed and S= M + N.

The next thing to observe is that p"(N4,, ) (za Ym_z for w =0, 1. To see this
for =0 (the other case is similar) take v € p°(Nd,, ) ¢°(N3,) - ¢ (N3,).
Then v = x4,,d; where i is even, i <m and x € N; so v=x4,9,_,. If x3,&p°S,
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then xJ, =yd;, ] odd, yES; but 2z, Exd;, implies yEN and j<m; so v=
¥3,9,,_1 = ¥9,,; contrary to v & ¢'(NJ,,). So x4, € p°S = (z),,_, which implies
v€(za,)° _, since v =xd, — {z,}. Conversely, if v € (zd,)",_,, then v+ {z,} €
(2)2_,=p°S; so v+{z,} = x4, for some even i and v+ {z,} £ ¢'S; so xEN,
v =1x4,,0,€ ¢$*(N3,,) — $'(N3,,) = p°(N3,,).

Let p be the parity of m and let ¢ be the parity of m + 1. The following
equations hold

ppM=<Zan>r}:1—1_Nam’ qu=Nam_<zan>r’;t—l

as will now be proved; these proofs are lengthy but routine.

Take vE€p°’M. Then v =x3,& ¢?M where x EM and i has parity p. If
vE N4, then i=m and x €N (by (WF)) contrary to x € M. So v €Ng,,. If
v € ¢S, then v = yd, with j of parity gq; but v€ $M, so y EN; but j#m, so
z,Eyd;=vCx contrary to xEM. So vZ¢“S. So vEp?’S=(z)}_,. But
-k € 28, — v implies k € z — v, so #v/k has parity p. So v€E€(zd,)_; — Nd,,.

Take v E€{zd,)? _, — Nd,,. If k€ z — v, then either k € zd, — v, so that #v/k
has parity p, or, k = z,, so that #v/k = m which has parity p. Sov€ (z)! _, =
p’S and z,&v. So v=1xd, with m—1i even, xE€S, vZPISD M. If z,Ex,
then i=m and v € NJ,,, a contradiction. So z, Zx; so xEM and v € p’M as
required. This proves the first equation.

Take v € pM. Then v=1x3;,, m—i odd, xEM, v & $*M. Since #v/z,=m
has parity p, one has v €(z)._, =p?S. So vE ¢*’S; so v=yd,, m—j even,
YEN; so j=m and vENJ,,. If vE(24,)F_,, then #v/x,=i has parity p
contrary to m — i odd. So vE€ N4, — (23,) ;-

Take v € Ng,, — (2d,)2 _;. Then v =x4,,, x€ N. By (WF) for S, v € ¢"M. If
v€Ep”S, then vE(2)?_,, so vE(zd,, )l _,, a contradiction. So v&p”S. So
vE $S. Sov=yd, m—jodd. So y E M. So v E ¢ M. So v € p?M. This proves
the second equation.

As a consequence of these two equations,

Na, = N, 1 (28,)7_y + (Nap — (28,)7_1)
= (<Z3n>,€1-1 - (<Zan>r’;t—l - N‘?m)) + (Nam - <Zan>5¢—1)
=((28,) 51— P"M) + p'M .

Now it is possible to prove (*) for S with p the parity of m.

If M is empty, then N3, = (2d,)5_,, s0 S=NC(z)I.

If M is non-empty, then let x be a minimal, maximal element with respect to <i
for p=0,1, respectively. Then (x)Z_, Cp?M = N3, —(24,)7_,. Put u=x+
{z,}. Then ué,,.,=x€MCS, while for i=m, m—i odd, ud,=xd9,+ {z,} €
NCS.So (u)iCsS. ‘

It remains to prove (*) for S with p, g interchanged (where p is still the parity
of m). :
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For this, note that Ng, € D,,_,(zd,). So, by the inductive hypothesis, there
exists L C (,7%,) disjoint from M with L + M well formed, p?L C (z4,)%_, and
Né,, =({zd,)%_,— p?L)+ p”L (the lemma and Proposition 3.8(¢)).

Suppose L is non-empty. Let x be maximal, minimal with respect to < in L for
p=0,1, respectively. Then (x)2_, CpPLCNg,,. Put u=x+{z,} (so u,,,, =
z,). Then {u)? C NC S. This gives (*) as required.

Suppose L is empty. Then p?M = (z4d,)?_, (=N4,,) and p?M = (2d,)? _,. So
M€ D, (z3,). By induction, either M C (zd,)% or (u)? CM for some u€

). In the former case, S C {z)Z since S= N+ M and N&,, = (zd,)%_,. In

m+2

the latter case, (u)? C M C S. This again gives (*). [
Corollary 3.10. C,z=D,z. [

An ordered pair of subsets S, T of (,,%) is said to have oriented union when
SNT=0,8+ Tis well formed, andx€ S,y € Timply x A yin S + T. (The pair
V, U of Proposition 3.8(e) is such.) An ordered triple of subsets R, S, T has
oriented union when the pairs R, SU T and RU S, T do."

Corollary 3.11 (Swelling up). Suppose a € 0, and put z ={k E w|i < k= j where -
ay={(@0)}, ad={(j)}. Then there exist u’, C(,,%,) for p=0,1 and m=1,2,
3, ... such that the following conditions hold:

(0) u?=0;

(i) the triple w2, a’., u, has oriented union; : ,

(i) p?ub,, C{2);, and, for q#p, u'+aj+u, =2} ~p up.)+

q,P
P um+1'

Proof. Define u} =0 and suppose u’, have been constructed for all m = k such
that (i), (ii) hold for m <k. It is required to construct uj,, and verify the
conditions for m = k. The basis for this is the calculation

((2)3- = p°u) + p'u) = p%a) + plaf) = pup) + pluy
= (s + ap_y +w_y) = plaf) + plaf) = p'wi) + p'uy
= (((ul(:—l + ‘12—1 n allc—l + ullc—l) + Plallc)) - Poullc) + Plullc
= (8L + ahoy +ul) — o) + o'
= ().
Proposition 3.8 precisely yields (i) with m = k. Put v?=u) + a? + u,, so that

Lemmas 3.6 and 3.4(c) yield p%Z=(z)s_,, p'vf=(z);_,. So viED,z2.
Lemma 3.9 yields uf,, C(;3,) asin (ii) for m=k. [] ‘
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Theorem 3.12. O, is a sub-w-category of N,. Furthermore, the unions involved in
the compositions of 0, are oriented unions.

Proof. It suffices to show, that, for (n +1)-cells a, b, € N, with s,(a) = ¢,(b), if
a,be0,, then a*, be g, and the second sentence of the theorem holds for
m=n+ 1 Putc=al,,=al,,,d=b’, = b,lﬁl, Apply Corollary 3.11 toa € 0,
to obtain u? C(,,%). By Proposition 3.8, the calculation
((«2)n =P up ) + Pl ) —p°) + p'c) — p°d) + p'd

= ((((un + ap + u,) = p°c) + p'c) — p°d) + p'd

=, +ayNa,+u,)+p'c)—p°d)+p'd

=((un+a,+u,)=p'd)+p'd

=(ua+ by +u,)—p’d)+p'd

=u)+b,+ul
implies u?,;, ¢, d have oriented union. It remains to show that (2) holds for
ax, b. . :

Put " =a° ﬂa,,, e' =b2Nb.. By (2) for a, b, note that a; =p %c+e€’ bl =

pld+é, anda —bo—p cﬂpod-l-(pod)ﬂe +(p loyne' + e’ Ne'. The defini-
tions of p° p' give the equations :

pllc+d)=p'd+(p'c)ne' =p'(c+d),

plc+d)=p%+ (p'd)ne’=p%c+d).

p'd « | plenp’d | (p’d)ne’ ) .

> - > pc e’
e (plone | ne :
b, by = a, : a’

‘Hence bl=p'(c+d)+e°ne', a®=p%c+d)+e®Ne’. So ax b satisfies
2. O - .

Lemma 3.13. Suppose U C (,,%5), S C(,.%1) are well formed with p°U C S and
S=al for some a€0,. If x<<w<yin S with x, y € p°U, then w € p°U.

Proof. First consider the case where U has a single element u; so p°U = ()’ C
S. Take x<<w<y in S where x = ud,, y = ud, with r, s both even. It can be
assumed that wd, = yd; with i even-and j odd. If s <}, then wd,= y9; = ud,d; =
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ud;.,d, and, since S is well formed, w =ud,,, € {u)?. So suppose j <s. If r<s,
_then ud,d, = ud,d,_,; so y <tx, and Lemma 3.2(a) gives x =w=y; so w € (u)).
So suppose s=r. Then ug, u;,..., u,_;ExNy. So uy, Uy, ..., u,_; Ew since
x <<w < y. In particular, u; € w which, together with wé, = ud,d;, implies w, = u;
and w=ud, € (u)?,.

Now consider the case of a general U. Take x<<w < y in § with x, y € p°U and
assume w & p°U. Appeal now to Lemma 3.6 to obtain a listing of the elements of
U. As each (u)? is replaced by ()’ in S, one cannot have both x, y in the same
(u)? by the first part of the proof. So it suffices to consider the situation where x
is next to be removed and the situation where y is next to be removed.

In the first case one has x = ud, € (u)° C § with i even and it can be supposed
that xd, = wg, with r even and s odd. If r <i, then wd, =xd, = ud,d, = ud,d,_,
which, since S is well formed, implies w = ud, € (u)?,,,va contradiction. Soi=<r
and wd, = xd, = ud,d, = ud,,,d;, which means ud,,,<w<y in (S—{u)o)+
(u),. So the situation is maintained with U having one fewer element.

Similarly in the second case one has y = ud, € (1)), C S with i even and it can
be supposed that wd, = yd, with r even and s odd. If i <s, then wd, = ud,_,d,
which, since S is well formed, implies w = ud,,, € (u)?, a contradiction. So s < i
and wd, = ud,d;_, which means x<tw < ud, in (S — (u)y)+ (u),,.

sYi-1

Since U is finite, the result follows. O

Corollary 3.14. If a € O, is an n-cell and u € a, = a° yet a # (u), then there exists
" r€[n~—1] with a= b*, c for some b, c € O, which are not r-cells.

Proof (Excision of extremals). Let r be the largest element of [rn — 1] such that

a? #{u)?, forp=0or1; this exists since a # (u). Property (2) and Proposi-
tion 3.1 give aZ,, = (u)?,, +a’,, N ar+1 for ¢ =0 and 1. So a°,, Nal,, #0. So
choose we€ a?,, Nal,,. Let x, y€ a’,, be minimal, maximal with respect to <
such that x <Iw < y. By Lemma 3.13 either x or y is not in (u)r o So either x or
y is in a’,, Nal,,. Furthermore smce x is minimal, (x)! Cp'a’,, Cal; and,
since y is maximal, (y)0 C p a,+1 C a

In the case where x€al,, Nal,,, the following equations deﬁne b, c€ 0, with
a=b*, c (Corollaries 3.10 and 3.11):

¢l =0, bl=a! form>r+1,

Cre1 = Crer = {x}, bl =al, — {x},

e=a, =@ (x))+(x)=b, b=a,
¢ =bl =a? form<r.

In the case where y € a?,, Nal,,, the following equatrons define b, c € 0, with
a=bxc:
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¢2=a?, bi=0 form>r+1,

m m >

cf+1=af+1—{y}, b:+l=b(r)+l={y}’

1 0 0 0 1_ gt 0_ 0
c:=a,, c,=(a,“<y),)+<y>,—b,, br—ar’
cd =bl=al for m<r. O

Theorem 3.15. Every cell of O, is an iterated composite of cells of the form {z).
‘Hence O, is the smallest sub-w-category of N, which contains all {z).

Proof. Iterate Corollary 3.14 O

4. Orientals: their freedom

For an w-category A, let |A|, denote the n-category whose elements are the
n-cells in A and whose compositions are the compositions *, of A for m <n.

‘An w-category A is freely generated by a subset G of A when, for all
w-categories X, for all n' € w, for all n-functors f:|A|,— X, and for all functions
8:GN|A|,,,—» X such that s,g=fs,, t,g=ft,, there exists a unique
(n + 1)-functor h:|A|,.,— X whose restriction to | A, is f and whose restriction
to GNIA|,,, is g :

GNlal,z — X
n -

A% AL

vy

|4l, - - X

Theorem 4.1. O, is freely generated by the set of elements of the form {z) where z
is a finite subset of . : ,

-Proof. Since [0, ], is the free category on the graph ($)=2w (as pointed out in
Section 2), the universal property holds for n = 0. More generally, for any n € o,
suppose f:|0,|,— X is an n-functor and g:(,%,)— X is a function such that f, g
determine an arrow of graphs
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(,25)
n+2 £ — X
( )I
‘Owln+1 Sp t,
Sn tn
¥
6., 7 > X

It is required to define an (n + 1)-functor k:|0,},,.,— X which extends both f
and g. By Theorem 3.15, if such an & exists, it is unique.

Let a be an (n + 1)-cell in §,. Define A{a) € X by induction on the number k of
elements in a.,, = a>,,. When k =0, define h(a) = f(a) since then a is an n-cell.

Suppose k =1. Then a},, = {u} for some u€(,%,). Then there exist unique
ncells d, e in O, such that a=d=*,,{(u)*, ;e and e.=e,={vE€a,N
a’|lv<tud, in a for some even i}. Define h(a) = f(d)*,_, g(u) *,_, fle) in X.

Suppose k >1. Let u be the <{-minimal element of a, ,; which (to be specific)
is first in the lexicographic order on (,%,)C w"*% Then a = b*,c for unique
‘(n+1)-cells b, ¢ in 0, such that ¢}, = c°,, = {u}. Define h(a) = h(b) *, h(c) in
X. '

That h preserves the composition *, follows inductively from the fact that the
compositions of @, are oriented unions (Theorem 3.12). [

Corollary 4.2. O, is freely generated by the set of elements of the form (z) where
zC[n]. O

‘5. The nerve of an w-category

Recall that the 0-cells of G, can be identified with elements of [n]. For each
order-preserving function {:[n]—[m], there is a unique n-functor 0,:0,— 0,
which is given by { on-0-cells. Explicitly, for a € @,

o ' [m] ) b }
| 0, (a); {ye(r+1 |3x€a? withy = {x¢;
- this follows from Corollary 4.2. Clearly this defines a functor

0:4— w-Cat

which takes {:[n]—[m] t0.0,:0,— 0, .
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The nerve A of an w-category A is the simplicial set

0 w-Cat(~, A)
A% —— @-Cat®® ——— Set .

An element of AA of dimension n is an n-functor 0,— A. Nerve is functorial in
A using composition: this gives the nerve functor

A—: @-Cat— [AP, Set]
which has a left adjoint
@ :[A", Set]——> w-Cat

whose value at a simplicial set X is given by the coend formula

[n]
OX = f X, %0,.

Yoneda’s lemma provides an isomorphism ®A[n]=
Let A[n] denote the subsimplicial set of A[#n] whose elements of dimension m

are the non-epic arrows [m]—[n] in 4.
Lemma 5.1. ®A[n]=|0,],_, .

Proof. Each non-invertible monic w:[m]—[n] in A induces -a simplicial map
A[m]—> A[n]. These simplicial maps form a colimit cone. Since @ is a left adjoint,
it preserves colimits. So the w-functors €, — ®A[n] form a colimit cone through
which the cone 0, : G, — 0, factors. The result follows. [

A simplicial set X is called n-coskeletal -when, for all k>n and all
Xos Xg5 - .., X, € X, satisfying x;9, = . for i<j, there exists a unique
YEX, with x,=yg, for all i E[k] In other words, each simplicial map
x:Alk]—- X for k> n has a unique extension y: A[k]— X.

Theorem 5.2. The nerve of an n-category is (n + 1)-coskeleial.

Proof. Suppose k> n + 1 and A is an n-category. A simplicial map x: A'[k]——> AA
amounts to an w-functor x':|0,],_,— A by Lemma 5.1. Then x's,_,{[k]),
x't,_1{[k]) -are (k — 1)-cells in ‘A with the same (k — 2)-source and target. Every
element of A is an n-cell and k—1>n, so x's,_,([k]) =x't,_,([k]). By
Corollary 4.2 there is a unique extension y’: 0, — A of x' whose value at {[k]) is
x's,([k]). This gives the unique extension y:A[k]->AA of x as required. [J
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A simplicial set with hollowness is a simplicial set X with certain elements
distinguished and called hollow satisfying the following conditions:
— there are no hollow elements of dimension 0;
. —hollow elements of dimension 1 are degenerate;
- all degenerate elements are hollow.
Let Ssh denote the category whose objects are simplicial sets with hollowness and
whose arrows are hollowness-preserving simplicial maps.

For an w-category A, an w-functor x: 0, — A is called hollow when x{[n]) is
an (n—1)-cell in A. In this way, the nerve AA becomes an object NA of Ssh,
and, the nerve functor lifts to a functor N:@-Cat— Ssh. To construct the left
adjoint for N, it is helpful to consider the category hA which contains A as a full
subcategory and, for each n>1, contains an extra object 4, with extra arrows

%
—_—

[n]—h, : [n-1]

'
Tp-1

such that d-,’. & = 0;. Then Ssh is equivalent to the full subcategory of [(hA)°F, Set]
consisting of those functors X:(hA)°*— Set for which each Xe:Xh,— X[n] is

monic.

Let 0% be the coequalizer in w-Cat of the two w-functors 2, 0O, correspond-
ing to {[n]), s,_;{[n]) € O,. An w-functor OF — A amounts precisely to a hollow
w-functor 0, — A. It is now possible to define a functor h@:hA— w-Cat such
that the diagram

| >N

hA —55—— w-Cat

~ commutes and h0 takes &:[n]— &, to the quotient w-functor G,— O, '
Let ¥':[(hA)*", Set]— w-Cat denote the left Kan extension of h@ :hA— w-Cat
along the Yoneda embedding hA— [(hA)®P, Set]; the formula is:

u€hA
W’X=f " Xux(hO)u.

The composite of ¥' with the fully faithful Ssh— [(hA), Set] gives the left
adjoint ¥ :Ssh— w-Cat for N.

Let w-Cath denote the full subcategory of w-Cat consisting of those -
categories A for which every element is a cell. Note that 0, 0" are in w-Cath and
so @, ¥ land in w-Cath.
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For a simplicial set X, define Cell(X) to be the union, modulo x = xa,, of the
sets

Cell,(X) = {x € X, | x, = x8,9,0; for j + 1< i}.

One has Cell(AA)=A in Set for all A€ w-Cath. It follows that A—:w-
Cath— [A?, Set], and hence N:w-Cath— Ssh, is conservative (reflects isomor-
phisms). ' '

In fact, I believe N: w-Cath— Ssh to be fully faithful and I would now like to
discuss my conjecture on characterizing the-(replete) image of N.

To motivate this conjecture we must look at the nth cocycle condition which we
can now write as an equation

x(5,(01...n+1))=x(,(01...n+1))

involving an w-functor x:0,,,—> A. Excision of extremals (Corollary 3.14) gives
a method for decomposing the n-source and n-target of (01...rn+1) into
composites of cells of the form (z). The result of this for n =0, 1, 2, 3, 4 is given
below using the convention of Roberts to omit brackets when the natural order of
evaluation of the compositions #;, *,, *,, ... is intended.

50{01) =(0),  £,{01) = (1),

5,012) = (02),  £,(012) = (12)#,(01) ,

5,{0123) = (23)#,(012)%,{023),  1,{0123) = (123)%,(01)%,{013) ,

55(01234) = (234) %, (12) %, (01 )%, {0124 ) *,(34)%,(23)%,(012)*,(0234) ,

£,(01234) = (1234)#,(01)%, (014)#,{34 )%, (123}, (01 ), (0134) #,(34)
%, (0123)*,(034),

5,(012345) = (2345) %, (12)#,{01 ), (125)%{01) %, {015)*,(45)%,(234)*,(12)
*0<01)*1(1245)*0<01)*1(015)5<4’5)*0<234}§0<12>*0<01)
x, (45 )% (124 )%, {01 ), (0145) %, (45)%,(01234) %, (045 ) #,(2345)
g (12)%, (01 ), {125) (01 )+, (015) #, (45 )%, (234) %, (12)%,(01)
{01245 )%, (45 )% (34) (23 ) 2 (012) #, (45 ), (0234 )%, (045)
#,(345) % (23 )% (12) %, (01 )%, (235 ) #,(12) #,(01)*, (0125)
£ (45 )% (34 (23)#,(012) %, (02345) ,
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1,(012345) = (12345 )%, (01 )%, (015 )%, (45 %, (34 )%, (123) %, (01 ), (45)%,(134)
%0 (01) % (0145 )%,(45) %, (34)%,(123)%,(01 ), (45)%,(0134)%,{045)
#, (45 )5, (34) %, (0123 )%, (45) %, (034 ) *, (045) %, (345)%,(23)
w0 (12) % (01 )%, (1235 )% (01 ), (015 )#,{(45) %, (34)%,{123)%,{01)
#, (01345 ) 5, (45 )% (34)#,(0123) %, (45 ), (034 ) *,{045 )%, (345)
#0(23)#(12) % (01 ), (01235) %, (45) %, (34) %, (23)*,(012}
#,(45)%0(34)%,(023)%,{0345) . '

Work of Roberts, Brown-Higgins, and myself has led us to expect that
simplicial sets X with hollowness should be isomorphic to NA for some A when
they satisfy some exactness condition. The clue to finding the correct condition
(which is far less trivial here than in Brown’s setting of c-groupoids where each
horn should have a unique hollow filler) is to ask the following question:

in the nth cocycle condition above which cells must in general be identities in
order to be able to say that x(01...k...n+1) is uniquely determined?

For example when n =1, we look at the equation
Xo2 = X1z %9 X1

and see that for k=1 there is no condition since x, is determined by the
equation, whereas, for k =0 we need x,, to be a 0-cell in order for the equation to

determine x,,.
The case n=4 gives enough data to make my conjecture convincing, see

Table 1.

Table 1
x(5,(012345)) = x(t,(012345))

m-cells which must become (m — 1)-celis on applying x

(01345) (01235) (0145) (0134) (0123) (015) (01)
(01245) (01234 (0125) (012)

(12345)(01235) (0123) (1235) (123)

(01234) (02345)(2345) (0234)(234)

(12345) (01345) (0345) {345)

(01245) (02345) (0145) (1245) (2345) (045)(45) .

[T P I SR P

The most striking thing is that in the row for k the m-cells listed all include k’s
neighbours (k — 1 and k + 1 unless one of these is impossible because k& = 0 or 5).
Roberts made a conjecture on the basis of this. However there are other cells
which include the neighbours but are not in the list: Roberts requires far more
cells to be identified than are really necessary. It still may be that the stronger



332 R. Street

condition which I am going to give is a consequence of that of Roberts; indeed, I
have proved that in characterizing nerves of 2-categories the Roberts condition is
enough.

Observe that the cells (z) listed for k have the property that k — 1, k, k + 1 are
not in the complement -z ={r €[5]|r €z} of z and, when the elements of
=1z+{k—1, k, k+ 1} are written out in order, they alternate in parity.

This leads us to make the following definitions:

A finite subset u = (ug, u,,...,u,) of w is called alternating when u,, u,,,
have opposite parity for i=0,1,...,m—1. Call u k-divided when k—1, k,
k+1Zuand u+ {k—1,k, k+1} is alternating. Call a monic u :[m]>>[n]in A
a k-monic when the complement of its image is k-divided.

Recall that the k-horn A*[n] in A[n] is the sub-simplicial set of A[n] consisting
of those a:[m]— [n] whose image does not contain [#] — {k}. A simplicial map
A[n]— X amounts to an element of X, (Yoneda lemma). A simplicial map
Af[n]— X amounts to a k-horn in X: that is, Xg,..., X .., X, €EX, 4
satisfying x; 9, = x;d,_, for i <j, i#k, j# k.

Let A,[n] be the object of Ssh whose underlying simplicial set is A[n] and
whose non-degenerate hollow elements are the k-monics. Regard A¥[n] as in Ssh
by taking as hollow the hollow elements of A [n] which are in A*[n]. (So
A*[n]— A,[n] is a regular monic in Ssh.) A k-horn (x,),,, in X € Ssh is called
admissible when it corresponds to an arrow A*[n]— X in Ssh.

Conjecture 5.3. An object X of Ssh is isomorphic to NA for some A € w-Cath if
and only if it satisfies the following two conditions:

(1) for each admissible %-horn (x )i there exists a unique hollow x with
xd; = x; for all i # k; and,

(2) if x and (x3,),,, are hollow, then so is xd,.

Note that (1) just says that X is orthogonal to (is a sheaf for) the inclusion:
A¥[n]— Ak[n] that is

Ssh(4,[n], X)—> Ssh(A*[n], X) .

Also, (2) says that X is orthogonal to the identity map A[n]— A[n] with two
different hollowness structures of A[n]. The result would therefore carry over to
w-categories and simplicial objects in any ﬁmtely complete category.

What techniques are available to prove the conjecture? We already have an
adjunction '
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and so ‘all’ we need to prove is that the unit X— NW¥X is invertible when X
satisfies (1) and (2). The description of ¥ as a coend does not seem very helpful
in achieving this. The underlying set of WX must be isomorphic to Cell(X) as
given above, but the asymmetry in the definition of Cell(X) makes it hard to work
with. For example, 2-cells

a
/u:\

NY T
b

can be identified with

_i__)
¥
in Cell(4.4), but they can also be identified with

a

In order to characterize the image of 2-Cat under N, I made use of a shift
operation X — Cell(X) which amounts to

For higher dimensions there is an analogous shift operation which is defined by
Roberts [9].

In previous work on characterizing nerves, Roberts and I were working without
an explicit-description of nerve. Roberts’ approach was to use the characterization
to construct it. Since we do now have the nerve functor N:w-Cath—Ssh, it
seems possible to make use of this in the characterization. I propose the following
approach. e

Recall the w-category 2, from Section 1 representing the underlying functor
w-Cat— Set. For each # there is also the n-category 2, representing n-Cat— Set.
Since we believe N to be fully faithzfui, we should have isomorphisms of sets

A= w-Cat(2,, A)=Ssh(N2,, NA).
Thus, a more symmetric definition of Cell(X) is

Cell(X) = Ssh(N2,, X)
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for X €Ssh. For X satisfying Conjecture 5.3(1), (2), it remains to produce
- compositions on Cell(X) making it an w-category with NCell(X) = X.

Let 0, 7,:2,—2, denote the w-functors corresponding to the n-cells s, (w) =
©, n), t,(0)=(1,n) of 2. Let v, :2,— 2, correspond to the n-cell of 2, which is
not an (n —1)-cell. The idempotents o,¢,, 7,t, induce candidates for s,, ¢, on
Cell(X): moreover, Cell, (X) = Ssh(N2,, X) is the set of n-cells. By virtue of its
representing w-Cat— Set, 2, is a co-w-category in w-Cat; the underlying co-
category for the nth co-composition is:

It must be shown that, for X satisfying Conjecture 5.3(1) and (2), the functor
Ssh(N-, X) takes the above co-category to a category.

6. Bicategories and so on

Continuing in the speculative vein of the end of the last section, we offer the
following remarks on bicategories and their higher dimensional analogues.

Let A be a bicategory in the sense of Bénabou (see [6]). The notion of a
homomorphism of bicategories from a 2-category into A is easily generalized to
homomorphism from an n-category into A: the 0-composition is associative up to
invertible 2-cells in A which are coherent and natural in the m-cells for m >0.
The appropriate notion of nerve N A of A is the object of Ssh whose underlying
simplicial set is 4,4 =Hom(0,, A), whose elements x: 0,— A of dimension 2
are hollow when x(012) is invertible (not necessarily an identity). This N A
satisfies Conjecture 5.3(1), (2) except for uniqueness in property (1). For €xample

X,

*o1 zuxm/,,‘2

where x,,, x;, are not uniquely determined by xg,, x,,.

This suggests the possibility of characterizing bicategories and (normal)
homomorphisms as a full subcategory of Ssh. Even more boldly I propose objects
of Ssh satisfying (1) without “uniqueness” and (2) as an accessible definition of
weak w-categories (the infinite generalization of bicategories).

.
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